Appendix 2-5: Rejected ecotox bibliography for Chlorpyrifos



Download 6.25 Mb.
Page82/151
Date conversion04.02.2017
Size6.25 Mb.
1   ...   78   79   80   81   82   83   84   85   ...   151
organophosphate compound phenyl saligenin phosphate (PSP) could disrupt the activity of the Ca(2+)-activated enzyme tissue transglutaminase (TGase 2) from cultured cell lines of neuronal (N2a) and hepatic (HepG2) origin. The results indicated that PSP added directly to cytosol extracts from healthy cells was able to inhibit TGase 2 activity by 40-60% of control levels at sub-lethal concentrations (>= 0.1 mu M) that were approximately 100-fold lower than their IC(50) values in cytotoxicity assays. Following 24 h exposure of N2a cells to 0.3 and 3 mu M PSP in situ, a similar reduction in activity was observed in subsequent assays of TGase 2 activity. However, significantly increased activity was observed following in situ exposure of HepG2 cells to PSP (ca. 4-fold at 3 mu M). Western blotting analysis indicated slightly reduced levels of TGase 2 in N2a cells compared to the control, whereas an increase was observed in the level of TGase 2 in HepG2 cells. We suggest that TGase 2 represents a potential target of organophosphate toxicity and that its response may vary in different cellular environments, possibly affected by its expression pattern. (C) 2009 Elsevier Ltd. All rights reserved.
Keywords: N2a neuroblastoma, HepG2 hepatoma, Organophosphate, Neurotoxicity,
ISI Document Delivery No.: 526GV

528. Hart, E.; Coscolla, C.; Pastor, A., and Yusa, V. GC-MS characterization of contemporary pesticides in PM10 of Valencia Region, Spain. 2012; 62, 118-129.


Rec #: 61319
Keywords: FATE
Notes: Chemical of Concern: CPY
Abstract: Abstract: Better knowledge of the occurrence of pesticides in the inhalable fraction of particulate matter (PM10) could be very useful for future exposure assessment in individuals of the general public. The present work studies the spatial and temporal distribution of the occurrence of currently used pesticides (CUPs) in PM10. Ambient air samples were collected from January through December 2010 at one remote, one urban and three rural sites in Valencia Region (Spain) and analyzed for 42 CUPs using a gas chromatography coupled to mass spectrometry in tandem (GC-MS/MS) approach. Overall, 24 pesticides were detected in the PM10 fraction, four of them currently banned pesticides. Among those detected, concentrations of two particle-bound pesticides (permethrin and pyrimethanil) were, to our knowledge, reported for the first time in air in the literature. The detected pesticides appeared at frequencies ranging from <1 to 47%, with chlorpyrifos, bifenthrin and diazinon presenting the highest frequencies. The concentrations detected ranged from a few to several hundred pg m(-3), with ethoprophos showing the highest average concentration (1492 pg m(-3)). Each station shows its own specific pesticide profile, which is linked to the different types of crops around each site. Seasonal patterns were observed in the rural stations of Alzira and Sant Jordi, correlating pesticide detection with their application in agricultural practices, mostly in spring and early summer. These findings suggest that more efforts are required to implement an extensive air monitoring network in Europe for pesticide control and to develop regulations or recommendations regarding pesticide levels in ambient air. (C) 2012 Elsevier Ltd. All rights reserved.
Keywords: Pesticides, Temporal variations, PM10
ISI Document Delivery No.: 038QC

529. Hartwell, Si and Hartwell, SI. Distribution of Ddt and Other Persistent Organic Contaminants in Canyons and on the Continental Shelf Off the Central California Coast. 2008 Apr; 65, (3): 199-217.


Rec #: 49589
Keywords: FATE
Notes: Chemical of Concern: CPY
Abstract: Abstract: Sediment samples were collected to delineate the distribution of contaminants along the central California coast. Sampling included a variety of Canyons and shelf/slope areas to evaluate contaminant transport patterns and potential delivery to Canyons and the continental slope to a depth of 1200m. Sediments were collected and analyzed for organic contaminants using standard techniques of the NOAA National Status and Trends Program (NS&T). DDT is distributed on the shelf within a zone of fine-grained sediments between Half Moon and Monterey Bays. DDT was found at higher concentrations in Ascension, Ano Nuevo, and Monterey/Soquel Canyons than in Pioneer and Carmel Canyons, the Gulf of the Farallones, or the continental slope. The Monterey Bay watershed appears to be the primary source of DDT. In contrast, PAHs and PCBs on the shelf appear to be derived primarily from San Francisco Bay. DDT appears to be delivered to the deep ocean via the Canyons more than from cross-shelf sediment transport. Sediment budget estimates for the continental shelf north of Monterey Bay need further refinement and more data to account for the movement of material from Monterey Bay onto the shelf.
Keywords: INE, USA, California, Ano Nuevo
Keywords: INE, USA, California, Monterey
Keywords: Pollution dispersion
Keywords: Watersheds
Keywords: INE, USA, California, Monterey Bay, Soquel Canyon
Keywords: Insecticides
Keywords: Aromatic hydrocarbons
Keywords: INE, USA, California, Monterey Bay
Keywords: Sediment transport
Keywords: budgets
Keywords: PCB compounds
Keywords: PCB
Keywords: Bays
Keywords: Sediment pollution
Keywords: Continental slope
Keywords: canyons
Keywords: Coastal zone
Keywords: Oceans
Keywords: INE, USA, California, Carmel
Keywords: DDT
Keywords: P 1000:MARINE POLLUTION
Keywords: INE, USA, California, San Francisco Bay
Keywords: Pollution Abstracts; Oceanic Abstracts
Keywords: Contaminants
Keywords: Biology
Date revised - 2008-05-01
Language of summary - English
Location - INE, USA, California, Monterey Bay; INE, USA, California, Ano Nuevo; INE, USA, California, San Francisco Bay; INE, USA, California, Monterey Bay, Soquel Canyon; INE, USA, California, Carmel; INE, USA, California, Monterey
Pages - 199-217
ProQuest ID - 289494605
SubjectsTermNotLitGenreText - INE, USA, California, Monterey Bay; INE, USA, California, Ano Nuevo; INE, USA, California, San Francisco Bay; INE, USA, California, Monterey Bay, Soquel Canyon; INE, USA, California, Carmel; INE, USA, California, Monterey; canyons; DDT; Insecticides; Sediment pollution; Oceans; budgets; Contaminants; Sediment transport; Watersheds; Bays; PCB compounds; Coastal zone; Continental slope; Pollution dispersion; PCB; Aromatic hydrocarbons
Last updated - 2011-10-26
Corporate institution author - Hartwell, SI
DOI - OB-MD-0007974866; 8102359; 0141-1136 English

530. Harwood, A. D. Temperature as a Toxicity Identification Evaluation Tool for Pyrethroid Insecticides: Toxicokinetic Confirmation. 2008: 55 p. (UMI# 1456838)(Publ As 117852).


Rec #: 100
Keywords: PUBL AS
Notes: Chemical of Concern: CPY,DDT,LCYT,PMR

531. Harwood, Amanda D; Landrum, Peter F; Weston, Donald P, and Lydy, Michael J. Using Spme Fibers and Tenax to Predict the Bioavailability of Pyrethroids and Chlorpyrifos in Field Sediments. 2013 Feb; 173, 47-51.


Rec #: 38429
Keywords: MIXTURE
Notes: Chemical of Concern: CPY
Abstract: Abstract: The presence of pyrethroids in both urban and agricultural sediments at levels lethal to invertebrates has been well documented. However, variations in bioavailability among sediments make accurate predictions of toxicity based on whole sediment concentrations difficult. A proposed solution to this problem is the use of bioavailability-based estimates, such as solid phase microextraction (SPME) fibers and Tenax beads. This study compared three methods to assess the bioavailability and ultimately toxicity of pyrethroid pesticides including field-deployed SPME fibers, laboratory-exposed SPME fibers, and a 24-h Tenax extraction. The objective of the current study was to compare the ability of these methods to quantify the bioavailable fraction of pyrethroids in contaminated field sediments that were toxic to benthic invertebrates. In general, Tenax proved a more sensitive method than SPME fibers and a correlation between Tenax extractable concentrations and mortality was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Keywords: 2921-88-2
Keywords: Animals
Keywords: Geologic Sediments -- chemistry
Keywords: Chlorpyrifos -- chemistry
Keywords: Polymers -- chemistry
Keywords: Pyrethrins -- chemistry
Keywords: Solid Phase Microextraction
Keywords: Soil Pollutants -- chemistry
Keywords: 24938-68-9
Keywords: Soil Pollutants -- analysis
Keywords: Soil Pollutants
Keywords: Chlorpyrifos
Keywords: Chlorpyrifos -- analysis
Keywords: 0
Keywords: Pyrethrins -- analysis
Keywords: Pyrethrins
Keywords: tenax
Keywords: Polymers
Keywords: Environmental Monitoring -- methods
Date completed - 2013-02-01
Date created - 2012-12-18
Date revised - 2013-02-04
Language of summary - English
Pages - 47-51
ProQuest ID - 1240902145
Last updated - 2013-02-05
British nursing index edition - Environmental pollution (Barking, Essex : 1987), February 2013, 173:47-51
Corporate institution author - Harwood, Amanda D; Landrum, Peter F; Weston, Donald P; Lydy, Michael J
DOI - MEDL-23202281; 23202281; 1873-6424 eng

532. Hassan, Jalal; Farahani, Abolfazl; Shamsipur, Mojtaba, and Damerchili, Fatemeh. Rapid and simple low density miniaturized homogeneous liquidÇôliquid extraction and gas chromatography/mass spectrometric determination of pesticide residues in sediment. 2010 Dec 15-; 184, (1Çô3): 869-871.


Rec #: 5770
Keywords: CHEM METHODS
Notes: Chemical of Concern: CPY
Abstract: A simple, rapid and environmentally friendly analytical methodology is developed for extraction of pesticides (diazinon, chlorpyrifos and trifluralin) from sediment samples based on a technique called low density miniaturized homogenous liquidÇôliquid extraction (LDMHLLE) prior gas chromatography mass spectrometry determination. The method based on homogeneous liquidÇôliquid extraction with methanol containing n-hexane as a solvent of lower density than water (n-hexane). After addition of water, n-hexane solvent immediately forms a distinct water immiscible phase at the top of the vial, which can be easily separated and injected to the GC/MS instrument for quantification. Acquisition was performed in the selected ion monitoring mode. The limits of detection were estimated for the individual pesticides as 3Sb (three times of the standard deviation of baseline) of the measured chromatogram for pesticides. The proposed method is very fast, simple, and sensitive without any need for stirring and centrifugation and applied to real sediment samples, successfully. Low density miniaturized homogenous liquidÇôliquid solvent extraction/ Pesticides/ Sediment samples

533. Haswell, E. S.; Phillips, R., and Rees, D. C. Mechanosensitive Channels: What Can They Do and How Do They Do It?


Rec #: 49979
Keywords: NO TOXICANT
Notes: Chemical of Concern: CPY
Abstract: COMMENTS: Cites: Nature. 2009 Sep 3;461(7260):120-4 (medline /19701184)
COMMENTS: Cites: J Biol Chem. 2005 Oct 14;280(41):34684-90 (medline /16109709)
COMMENTS: Cites: Biochemistry. 2005 Sep 13;44(36):12239-44 (medline /16142922)
COMMENTS: Cites: Curr Biol. 2006 Jan 10;16(1):1-11 (medline /16401419)
COMMENTS: Cites: Science. 2006 Apr 28;312(5773):534-5 (medline /16645081)
COMMENTS: Cites: Biophys J. 2007 Feb 15;92(4):1233-40 (medline /17142294)
COMMENTS: Cites: Annu Rev Biophys Biomol Struct. 2007;36:107-30 (medline /17263662)
COMMENTS: Cites: Arch Microbiol. 2008 Jan;189(1):49-58 (medline /17665170)
COMMENTS: Cites: Nat Struct Mol Biol. 2007 Dec;14(12):1141-9 (medline /18037888)
COMMENTS: Cites: Appl Environ Microbiol. 2008 Apr;74(8):2454-60 (medline /18310427)
COMMENTS: Cites: Curr Biol. 2008 May 20;18(10):730-4 (medline /18485707)
COMMENTS: Cites: Methods Enzymol. 1997;277:505-24 (medline /18488322)
COMMENTS: Cites: J Gen Physiol. 2008 Jul;132(1):67-83 (medline /18591417)
COMMENTS: Cites: Arch Microbiol. 2009 May;191(5):403-14 (medline /19252899)
COMMENTS: Cites: Eur Biophys J. 2009 Sep;38(7):1013-27 (medline /19424690)
COMMENTS: Cites: Biophys J. 2009 Aug 19;97(4):1048-57 (medline /19686652)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12664-9 (medline /20616037)
COMMENTS: Cites: EMBO J. 2002 Oct 15;21(20):5323-30 (medline /12374733)
COMMENTS: Cites: J Am Chem Soc. 2003 Oct 22;125(42):12722-3 (medline /14558816)
COMMENTS: Cites: Biochemistry. 2003 Dec 9;42(48):14306-17 (medline /14640699)
COMMENTS: Cites: Biophys J. 2004 Nov;87(5):3050-65 (medline /15339798)
COMMENTS: Cites: J Gen Physiol. 2005 Feb;125(2):143-54 (medline /15657299)
COMMENTS: Cites: Biophys J. 2003 Oct;85(4):2087-99 (medline /14507677)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13698-703 (medline /14581612)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15959-64 (medline /14671322)
COMMENTS: Cites: Biophys J. 2006 Oct 15;91(8):2874-81 (medline /16861270)
COMMENTS: Cites: Arch Microbiol. 2006 Nov;186(5):377-83 (medline /16897034)
COMMENTS: Cites: Biophys J. 2007 Feb 1;92(3):886-902 (medline /17114233)
COMMENTS: Cites: Eur J Biochem. 1992 Jun 1;206(2):559-65 (medline /1350764)
COMMENTS: Cites: Science. 1992 Mar 27;255(5052):1712-5 (medline /1553560)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1987 Apr;84(8):2297-301 (medline /2436228)
COMMENTS: Cites: J Physiol. 1984 Jul;352:685-701 (medline /6086918)
COMMENTS: Cites: Science. 2003 Jun 20;300(5627):1922-6 (medline /12738871)
COMMENTS: Cites: J Biol Chem. 2003 Aug 22;278(34):32246-50 (medline /12767977)
COMMENTS: Cites: Science. 2003 Jul 4;301(5629):96-9 (medline /12805553)
COMMENTS: Cites: Nature. 2003 Jun 26;423(6943):949-55 (medline /12827192)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4071-6 (medline /15024097)
COMMENTS: Cites: Biophys J. 2004 Apr;86(4):2113-20 (medline /15041651)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4764-9 (medline /15041744)
COMMENTS: Cites: Biophys J. 2004 May;86(5):2846-61 (medline /15111402)
COMMENTS: Cites: Biophys J. 2004 May;86(5):2862-70 (medline /15111403)
COMMENTS: Cites: Biophys J. 2004 May;86(5):2883-95 (medline /15111405)
COMMENTS: Cites: Biophys J. 2004 Nov;87(5):3172-80 (medline /15339809)
COMMENTS: Cites: Biochim Biophys Acta. 2004 Nov 3;1666(1-2):88-104 (medline /15519310)
COMMENTS: Cites: Nat Neurosci. 2005 Jan;8(1):43-50 (medline /15580270)
COMMENTS: Cites: Biophys J. 2005 Apr;88(4):3050-9 (medline /15665126)
COMMENTS: Cites: Nat Struct Mol Biol. 2005 Feb;12(2):113-9 (medline /15665866)
COMMENTS: Cites: Archaea. 2002 Mar;1(1):35-44 (medline /15803657)
COMMENTS: Cites: Science. 2005 Jul 29;309(5735):755-8 (medline /16051792)
COMMENTS: Cites: Nature. 2005 Aug 4;436(7051):647-54 (medline /16079835)
COMMENTS: Cites: Phys Biol. 2004 Jun;1(1-2):42-52 (medline /16204821)
COMMENTS: Cites: Nature. 2005 Dec 1;438(7068):578-80 (medline /16319876)
COMMENTS: Cites: Nat Rev Mol Cell Biol. 2006 Apr;7(4):265-75 (medline /16607289)
COMMENTS: Cites: Pflugers Arch. 2006 Dec;453(3):333-51 (medline /17021800)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5883-8 (medline /17389370)
COMMENTS: Cites: Mol Microbiol. 2007 Apr;64(2):560-74 (medline /17493135)
COMMENTS: Cites: Plant Cell Physiol. 2007 Jul;48(7):908-14 (medline /17566056)
COMMENTS: Cites: Biochemistry. 2007 Sep 25;46(38):10899-908 (medline /17718516)
COMMENTS: Cites: Biophys J. 2008 Feb 15;94(4):1252-66 (medline /17981908)
COMMENTS: Cites: Biophys J. 2008 Apr 15;94(8):3003-13 (medline /18065458)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4033-8 (medline /18310324)
COMMENTS: Cites: Biophys J. 2008 Jul;95(2):581-96 (medline /18390625)
COMMENTS: Cites: Science. 2008 Aug 29;321(5893):1179-83 (medline /18755969)
COMMENTS: Cites: Science. 2008 Aug 29;321(5893):1210-4 (medline /18755978)
COMMENTS: Cites: Acc Chem Res. 2009 Jan 20;42(1):107-16 (medline /18939858)
COMMENTS: Cites: Ann Bot. 2009 Apr;103(6):847-58 (medline /19182220)
COMMENTS: Cites: Nature. 2009 May 21;459(7245):379-85 (medline /19458714)
COMMENTS: Cites: Annu Rev Microbiol. 2010;64:313-29 (medline /20825352)
COMMENTS: Cites: Biochemistry. 2011 May 17;50(19):4087-96 (medline /21456519)
COMMENTS: Cites: Nature. 1994 Mar 17;368(6468):265-8 (medline /7511799)
COMMENTS: Cites: Science. 1996 Feb 9;271(5250):795-9 (medline /8628994)
COMMENTS: Cites: Science. 1998 Apr 3;280(5360):69-77 (medline /9525859)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11471-5 (medline /9736761)
COMMENTS: Cites: J Biol Chem. 1998 Oct 9;273(41):26670-4 (medline /9756908)
COMMENTS: Cites: Science. 1998 Dec 18;282(5397):2220-6 (medline /9856938)
COMMENTS: Cites: J Gen Physiol. 1999 Apr;113(4):525-40 (medline /10102934)
COMMENTS: Cites: J Bacteriol. 2000 Jan;182(1):248-51 (medline /10613892)
COMMENTS: Cites: Cell. 2000 Oct 27;103(3):525-35 (medline /11081638)
COMMENTS: Cites: Prog Biophys Mol Biol. 2000;74(1-2):115-40 (medline /11106809)
COMMENTS: Cites: Nature. 2001 Feb 8;409(6821):720-4 (medline /11217861)
COMMENTS: Cites: Physiol Rev. 2001 Apr;81(2):685-740 (medline /11274342)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7801-5 (medline /11427713)
COMMENTS: Cites: Biophys J. 2001 Aug;81(2):917-36 (medline /11463635)
COMMENTS: Cites: Biophys J. 2001 Sep;81(3):1345-59 (medline /11509350)
COMMENTS: Cites: Nature. 2001 Sep 13;413(6852):194-202 (medline /11557988)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5643-8 (medline /11960017)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5999-6004 (medline /11972047)
COMMENTS: Cites: Science. 2002 Nov 22;298(5598):1582-7 (medline /12446901)
COMMENTS: Cites: EMBO J. 2003 Jan 2;22(1):36-46 (medline /12505982)
COMMENTS: Cites: J Biol Chem. 2003 Mar 28;278(13):11237-45 (medline /12551944)
COMMENTS: Cites: Microbiol Mol Biol Rev. 2003 Mar;67(1):66-85, table of contents (medline /12626684)
COMMENTS: Cites: Biophys J. 2003 Apr;84(4):2357-65 (medline /12668444)
COMMENTS: Cites: J Biol Chem. 2003 Jun 6;278(23):21076-82 (medline /12670944)
COMMENTS: Cites: Cell. 2003 Apr 18;113(2):261-73 (medline /12705873)
COMMENTS: Cites: Physiology (Bethesda). 2010 Feb;25(1):50-6 (medline /20134028)
COMMENTS: Cites: Annu Rev Biophys. 2010;39:111-37 (medline /20192782)
COMMENTS: Cites: Nat Struct Mol Biol. 2010 Apr;17(4):451-8 (medline /20208543)
COMMENTS: Cites: J Gen Physiol. 2010 Jun;135(6):641-52 (medline /20513760)
COMMENTS: Cites: J Gen Physiol. 2010 Oct;136(4):483-94 (medline /20876362)
COMMENTS: Cites: J Biol Chem. 2011 Jan 7;286(1):877-88 (medline /20978126)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19856-60 (medline /21041677)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4328-33 (medline /21368211)
COMMENTS: Cites: Biochem Soc Trans. 2011 Jun;39(3):733-40 (medline /21599642)
COMMENTS: Cites: Biophys J. 1993 Jul;65(1):177-83 (medline /7690260)
COMMENTS: Cites: Annu Rev Physiol. 1997;59:633-57 (medline /9074781)
COMMENTS: Cites: J Neurosci. 1997 Nov 1;17(21):8259-69 (medline /9334401)
COMMENTS: Cites: Biophys J. 1997 Oct;73(4):1925-31 (medline /9336188)
COMMENTS: Cites: Mol Microbiol. 1998 May;28(3):583-92 (medline /9632260)
COMMENTS: Cites: EMBO J. 1999 Apr 1;18(7):1730-7 (medline /10202137)
COMMENTS: Cites: Biophys J. 1999 Oct;77(4):1960-72 (medline /10512816)
COMMENTS: Cites: Biophys J. 2001 May;80(5):2074-81 (medline /11325711)
COMMENTS: Cites: Comp Biochem Physiol A Mol Integr Physiol. 2001 Oct;130(3):437-60 (medline /11913457)
COMMENTS: Cites: Biophys J. 2002 Jul;83(1):290-8 (medline /12080120)
COMMENTS: Cites: Nat Struct Biol. 2002 Sep;9(9):696-703 (medline /12172537)
ABSTRACT: While mechanobiological processes employ diverse mechanisms, at their heart are force-induced perturbations in the structure and dynamics of molecules capable of triggering subsequent events. Among the best characterized force-sensing systems are bacterial mechanosensitive channels. These channels reflect an intimate coupling of protein conformation with the mechanics of the surrounding membrane; the membrane serves as an adaptable sensor that responds to an input of applied force and converts it into an output signal, interpreted for the cell by mechanosensitive channels. The cell can exploit this information in a number of ways: ensuring cellular viability in the presence of osmotic stress and perhaps also serving as a signal transducer for membrane tension or other functions. This review focuses on the bacterial mechanosensitive channels of large (MscL) and small (MscS) conductance and their eukaryotic homologs, with an emphasis on the outstanding issues surrounding the function and mechanism of this fascinating class of molecules.
MESH HEADINGS: Arabidopsis/metabolism/physiology
MESH HEADINGS: Cell Membrane/metabolism/*physiology
MESH HEADINGS: Computational Biology
MESH HEADINGS: Escherichia coli/metabolism/*physiology
MESH HEADINGS: Escherichia coli Proteins/metabolism
MESH HEADINGS: Eukaryota/metabolism/*physiology
MESH HEADINGS: Hydrophobic and Hydrophilic Interactions
MESH HEADINGS: Ion Channel Gating/physiology
MESH HEADINGS: Ion Channels/metabolism
MESH HEADINGS: *Mechanotransduction, Cellular
MESH HEADINGS: Membrane Proteins/metabolism
MESH HEADINGS: Mutagenesis, Site-Directed
MESH HEADINGS: Osmotic Pressure
MESH HEADINGS: Protein Conformation
MESH HEADINGS: Protein Stability eng

534. Hayward, S. J.; Gouin, T., and Wania, F. Levels and Seasonal Variability of Pesticides in the Rural Atmosphere of Southern Ontario. 2010; 58, (2): 1077-1084.


Rec #: 61369
Keywords: FATE
Notes: Chemical of Concern: CPY
Abstract: Abstract: Air samples were collected continuously in Egbert, Ontario, which is in a rural agricultural area north of Toronto, between March 2006 and September 2007 and analyzed for pesticides of both current and historic use. The fungicide chlorothalonil was present in highest abundance with levels exceeding 2000 pg.m(-3) in the summer. Almost as abundant, with summer time concentrations around 400 to 600 pg.m(-3), were the herbicides atrazine, alachlor, and metolachlor. Other pesticides in current use, such as trifluralin, pendimethalin, chlorpyrifos, endosulfan, and disulfoton were consistently present at levels approximately 1 order of magnitude lower. Concentrations of banned pesticides (chlordanes and hexachlorocyclohexane), were generally below 10 pg.m(-3), except for hexachlorobenzene, which was present at the global average of approximately 50 pg.m(-3). These levels and the fact that they are generally lower than what has been reported for the area previously are in agreement with pesticide usage data for Ontario. Only the concentrations of chlorothalonil, chlorpyrifos, and HCB were correlated with air mass origin, as determined by back trajectory analysis. All pesticides had higher levels during the growing season compared to those in winter, but the ratio of concentrations during the different seasons is much higher for the pesticides in current use. That ratio may aid in distinguishing seasonal variability caused by pesticide application during the growing season from that caused by temperature-driven revolatilization. Higher concentrations of the banned pesticides during 2607 compared to those in 2006 may be due to higher volatilization rates caused by higher surface temperatures consistent with the El Nino Southern Oscillation.
Keywords: Pesticide, atmosphere, seasonal variability, back trajectory, El Nino
ISI Document Delivery No.: 544PV

535. He, L.; Luo, X.; Xie, H.; Wang, C.; Jiang, X., and Lu, K. Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction Followed High-Performance Liquid Chromatography for the Determination of Organophosphorus Pesticides in Water Sample.


Rec #: 77959
Keywords: CHEM METHODS
Notes: Chemical of Concern: CPY
Abstract: ABSTRACT: Using 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)MIM][PF(6)]) ionic liquid as extraction solvent, organophosphorus pesticides (OPPs) (parathion, phoxim, phorate and chlorpyifos) in water were determined by dispersive liquid-liquid microextraction (DLLME) combined with high-performance liquid chromatography (HPLC). The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of [C(8)MIM][PF(6)] dispersed entirely into sample solution with the help of disperser solvent (methanol). Parameters including extraction solvent and its volume, disperser solvent and its volume, extraction time, centrifugal time, salt addition, extraction temperature and sample pH were investigated and optimized. Under the optimized conditions, up to 200-fold enrichment factor of analytes and acceptable extraction recovery (>70%) were obtained. The calibration curves were linear in the concentration range of 10.5-1045.0 microg L(-1) for parathion, 10.2-1020.0 microg L(-1) for phoxim, 54.5-1089.0 microg L(-1) for phorate and 27.2-1089.0 microg L(-1) for chlorpyifos, respectively. The limits of detection calculated at a signal-to-noise ratio of 3 were in the range of 0.1-5.0 microg L(-1). The relative standard deviations for seven replicate experiments at 200 microg L(-1) concentration level were less than 4.7%. The proposed method was applied to the analysis of four different sources water samples (tap, well, rain and Yellow River water) and the relative recoveries of spiked water samples are 99.9-115.4%, 101.8-113.7% and 87.3-117.6% at three different concentration levels of 75, 200 and 1000 microg L(-1), respectively.
MESH HEADINGS: Chemical Fractionation/*methods
MESH HEADINGS: Chlorpyrifos/analysis/isolation &
MESH HEADINGS: purification
MESH HEADINGS: Chromatography, High Pressure Liquid/*methods
MESH HEADINGS: Hydrogen-Ion Concentration
MESH HEADINGS: Imidazoles/chemistry
MESH HEADINGS: Ionic Liquids/*chemistry
MESH HEADINGS: Organothiophosphorus Compounds/analysis/isolation &
MESH HEADINGS: purification
MESH HEADINGS: Parathion/analysis/isolation &
MESH HEADINGS: purification
MESH HEADINGS: Pesticides/*analysis/chemistry/isolation &
MESH HEADINGS: purification
MESH HEADINGS: Phorate/analysis/isolation &
MESH HEADINGS: purification
MESH HEADINGS: Salts
MESH HEADINGS: Solvents/chemistry
MESH HEADINGS: Temperature
MESH HEADINGS: Time Factors
MESH HEADINGS: Water Pollutants, Chemical/*analysis/chemistry/isolation &
MESH HEADINGS: purification eng

536. He, Li-Ming; Troiano, John; Wang, Albert; Goh, Kean, and He, Li-Ming. Environmental Chemistry, Ecotoxicity, and Fate of Lambda-Cyhalothrin. 2008.


Rec #: 46359
Keywords: REVIEW
Notes: Chemical of Concern: CPY
Abstract: Abstract: Lambda-cyhalothrin is a pyrethroid insecticide. Pyrethroids are synthetic chemical analogues of pyrethrins, which are naturally occurring insecticidal compounds produced in the flowers of chrysanthemums (Chrysanthemum cinerariaefolium). Insecticidal products containing pyrethroids have been widely used to control insect pests in agriculture, public health, and homes and gardens (Amweg and Weston 2005; Oros and Werner 2005). In agriculture, target crops include cotton, cereals, hops, ornamentals, potatoes, and vegetables, with applications made to control aphid, coleopterous, and lepidopterous pests. Pyrethroids are important tools used in public health management where applications are made to control cockroaches, mosquitoes, ticks, and flies, which may act as disease vectors. Residential use of pyrethroid products has increased because of the suspension of organophosphate products containing chlorpyrifos or diazinon (Oros and Werner 2005; Weston et al. 2005).
Start Page: 71
End Page: 91
Keywords: Agriculture
Keywords: Flowers
Keywords: Vegetables
Keywords: Cotton
Keywords: Ixodidae
Keywords: Aphididae
Keywords: Vectors
Keywords: organophosphates
Keywords: Crops
Keywords: hops
Keywords: Public health
Keywords: Chlorpyrifos
Keywords: Insecticides
Keywords: Cereals
Keywords: Solanum tuberosum
Keywords: Pests
Keywords: Pyrethroids
Keywords: X 24330:Agrochemicals
Keywords: pyrethrins
Keywords: Diazinon
Keywords: Toxicology Abstracts
Keywords: Chrysanthemum
Date revised - 2010-03-01
Language of summary - English
Pages - 71-91
ProQuest ID - 21371251
SubjectsTermNotLitGenreText - Agriculture; Vegetables; Flowers; Cotton; Vectors; organophosphates; hops; Crops; Public health; Chlorpyrifos; Insecticides; Cereals; Pests; Pyrethroids; pyrethrins; Diazinon; Solanum tuberosum; Ixodidae; Aphididae; Chrysanthemum
Last updated - 2011-12-14
British nursing index edition - Reviews of Environmental Contamination and Toxicology [Rev. Environ. Contam. Toxicol.]. Vol. 195, pp. 71-91. 2008.
Corporate institution author - He, Li-Ming; Troiano, John; Wang, Albert; Goh, Kean
DOI - MD-0012837985; 12490675; 0179-5953 English

537. He, Weiyi; You, Minsheng; Vasseur, Liette; Yang, Guang; Xie, Miao; Cui, Kai; Bai, Jianlin; Liu, Chunhui; Li, Xiaojing; Xu, Xiufeng, and Huang, Shiguo. Developmental and insecticide-resistant insights from the de novo assembled transcriptome of the diamondback moth, Plutella xylostella. 2012 Mar; 99, (3): 169-177.


Rec #: 3510
Keywords: NO TOXICANT
Notes: Chemical of Concern: CPY
Abstract: We present here the de novo assembly and annotation of the transcriptome of Plutella xylostella (diamondback moth (DBM)), a widespread destructive pest of cruciferous plants, using short reads generated by Illumina sequencing from different developmental stages and insecticide-resistant strains. A total of 171,262 non-redundant sequences, denoted as unigenes, were obtained. They represented approximately 100-fold of all DBM mRNA and EST sequences in GenBank thus far. We identified 38,255 unigenes highly similar to the known functional protein-coding genes, most of which were annotated using gene ontology (GO) and orthologous groups of proteins (COG). Global profiling of differentially expressed unigenes revealed enriched GOs and biological pathways that were related to specific developmental stages and insecticide resistance. We also evaluated the resistance-related single nucleotide polymorphism (SNP) using this high-throughput genotyping method. The newly developed transcriptome will facilitate researches on the DBM developmental biology and insecticide resistance evolution, and ultimately provide better pest management systems. Plutella xylostella/ Development/ Insecticide resistance/ Transcriptome/ Expression profiling/ Next generation sequencing

538. Hedlund, E. ; Karlsson, M.; Osborn, T.; Ludwig, W., and Isacson, O. Global Gene Expression Profiling of Somatic Motor Neuron Populations With Different Vulnerability Identify Molecules and Pathways of Degeneration and Protection.


Rec #: 50459
Keywords: IN VITRO
Notes: Chemical of Concern: CPY
Abstract: COMMENTS: Cites: Brain Res. 1996 Nov 25;741(1-2):82-8 (medline /9001708)
COMMENTS: Cites: J Immunol. 1997 Sep 15;159(6):2678-84 (medline /9300687)
COMMENTS: Cites: J Biol Chem. 1997 Oct 31;272(44):27558-64 (medline /9346890)
COMMENTS: Cites: Neurology. 1997 Dec;49(6):1612-6 (medline /9409355)
COMMENTS: Cites: Genomics. 1998 Mar 1;48(2):157-62 (medline /9521868)
COMMENTS: Cites: Development. 2006 May;133(10):1991-2000 (medline /16651541)
COMMENTS: Cites: Science. 2006 Jun 2;312(5778):1389-92 (medline /16741123)
COMMENTS: Cites: J Neurochem. 2006 Aug;98(3):926-38 (medline /16787413)
COMMENTS: Cites: J Comp Neurol. 2006 Nov 1;499(1):17-32 (medline /16958104)
COMMENTS: Cites: Connect Tissue Res. 2006;47(4):177-89 (medline /16987749)
COMMENTS: Cites: Science. 2006 Oct 6;314(5796):144-8 (medline /17023663)
COMMENTS: Cites: Science. 2008 Mar 21;319(5870):1668-72 (medline /18309045)
COMMENTS: Cites: Science. 2008 Mar 21;319(5870):1665-8 (medline /18356527)
COMMENTS: Cites: Nat Genet. 2008 May;40(5):572-4 (medline /18372902)
COMMENTS: Cites: Science. 2008 Apr 11;320(5873):233-6 (medline /18403711)
COMMENTS: Cites: Science. 2008 Apr 18;320(5874):365-9 (medline /18420933)
COMMENTS: Cites: Cell. 2008 May 16;133(4):585-600 (medline /18485868)
COMMENTS: Cites: Genes Dev. 2008 Jun 1;22(11):1451-64 (medline /18519638)
COMMENTS: Cites: Nat Rev Neurosci. 2008 Oct;9(10):747-58 (medline /18802445)
COMMENTS: Cites: Cell Stem Cell. 2008 Dec 4;3(6):575-6 (medline /19041769)
COMMENTS: Cites: Cell Stem Cell. 2008 Dec 4;3(6):637-48 (medline /19041780)
COMMENTS: Cites: Cell Stem Cell. 2008 Dec 4;3(6):649-57 (medline /19041781)
COMMENTS: Cites: Genes Dev. 2008 Dec 1;22(23):3282-91 (medline /19056883)
COMMENTS: Cites: Nat Protoc. 2009;4(1):44-57 (medline /19131956)
COMMENTS: Cites: Blood. 2009 Apr 9;113(15):3577-84 (medline /19190246)
COMMENTS: Cites: Science. 2009 Feb 27;323(5918):1205-8 (medline /19251627)
COMMENTS: Cites: Science. 2009 Feb 27;323(5918):1208-11 (medline /19251628)
COMMENTS: Cites: Bioessays. 2009 Mar;31(3):262-77 (medline /19260022)
COMMENTS: Cites: Neuron. 2009 Mar 12;61(5):708-20 (medline /19285468)
COMMENTS: Cites: J Neurosci. 2009 Mar 18;29(11):3365-73 (medline /19295143)
COMMENTS: Cites: Nat Rev Mol Cell Biol. 2009 Apr;10(4):276-86 (medline /19305417)
COMMENTS: Cites: J Neurosci. 2009 May 6;29(18):5938-48 (medline /19420260)
COMMENTS: Cites: Mol Brain. 2009;2:30 (medline /19781077)
COMMENTS: Cites: Cell. 1991 Feb 22;64(4):849-59 (medline /1997210)
COMMENTS: Cites: J Cell Biol. 1990 Apr;110(4):1307-17 (medline /2157718)
COMMENTS: Cites: Neuroscience. 1987 Aug;22(2):499-524 (medline /3670596)
COMMENTS: Cites: J Biol Chem. 1969 May 25;244(10):2693-709 (medline /4306035)
COMMENTS: Cites: Nature. 1995 May 4;375(6526):61-4 (medline /7536898)
COMMENTS: Cites: Nat Genet. 1995 Nov;11(3):335-7 (medline /7581461)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5496-500 (medline /7777537)
COMMENTS: Cites: J Biol Chem. 1995 Jun 16;270(24):14485-92 (medline /7782310)
COMMENTS: Cites: Nature. 1995 Feb 16;373(6515):623-6 (medline /7854420)
COMMENTS: Cites: Nature. 1993 Mar 4;362(6415):59-62 (medline /8446170)
COMMENTS: Cites: Neuron. 1995 Dec;15(6):1449-54 (medline /8845167)
COMMENTS: Cites: Neuron. 1997 Feb;18(2):327-38 (medline /9052802)
COMMENTS: Cites: Science. 1997 Jun 27;276(5321):2045-7 (medline /9197268)
COMMENTS: Cites: Cell. 1997 Aug 22;90(4):753-62 (medline /9288754)
COMMENTS: Cites: Cell. 1997 Oct 17;91(2):185-95 (medline /9346236)
COMMENTS: Cites: J Cell Biol. 1997 Dec 1;139(5):1255-69 (medline /9382871)
COMMENTS: Cites: Biochem J. 1998 Oct 1;335 ( Pt 1):51-7 (medline /9742212)
COMMENTS: Cites: J Neurosci Res. 1999 Jan 1;55(1):9-16 (medline /9890429)
COMMENTS: Cites: Biochim Biophys Acta. 2000 Jul 31;1467(1):244-53 (medline /10930526)
COMMENTS: Cites: J Neurosci. 2002 Jun 15;22(12):4897-905 (medline /12077187)
COMMENTS: Cites: Neurosci Lett. 2002 Dec 19;335(1):39-43 (medline /12457737)
COMMENTS: Cites: Mol Endocrinol. 1992 Nov;6(11):1815-24 (medline /1282671)
COMMENTS: Cites: Mol Cell Neurosci. 2003 Sep;24(1):117-29 (medline /14550773)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11716-20 (medline /1465388)
COMMENTS: Cites: J Neurol Sci. 2004 Jan 15;217(1):47-54 (medline /14675609)
COMMENTS: Cites: J Cell Biol. 1999 Nov 1;147(3):531-44 (medline /15132161)
COMMENTS: Cites: Brain Pathol. 2004 Jul;14(3):290-6 (medline /15446584)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9267-71 (medline /1924389)
COMMENTS: Cites: Nature. 1991 Jul 4;352(6330):77-9 (medline /2062380)
COMMENTS: Cites: Growth Factors. 1990;3(4):309-14 (medline /2257151)
COMMENTS: Cites: Genomics. 1989 Apr;4(3):339-47 (medline /2469635)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1989 Feb;86(3):802-6 (medline /2915979)
COMMENTS: Cites: Nature. 1993 May 20;363(6426):266-70 (medline /8487864)
COMMENTS: Cites: Nagoya J Med Sci. 1995 Dec;58(3-4):95-106 (medline /8725492)
COMMENTS: Cites: J Immunol. 1996 Aug 1;157(3):1132-8 (medline /8757618)
COMMENTS: Cites: Genomics. 1996 Dec 1;38(2):243-5 (medline /8954810)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):16021-6 (medline /17043238)
COMMENTS: Cites: Blood. 2007 Feb 15;109(4):1533-40 (medline /17062724)
COMMENTS: Cites: J Mol Neurosci. 2006;30(1-2):201-4 (medline /17192676)
COMMENTS: Cites: J Biol Chem. 1992 Feb 15;267(5):3262-7 (medline /1737782)
COMMENTS: Cites: Nat Neurosci. 2007 May;10(5):615-22 (medline /17435755)
COMMENTS: Cites: PLoS Biol. 2007 Dec;5(12):e325 (medline /18076286)
COMMENTS: Cites: J Biol Chem. 2008 Feb 22;283(8):5034-45 (medline /18089561)
COMMENTS: Cites: Nat Neurosci. 2008 Mar;11(3):251-3 (medline /18246065)
COMMENTS: Cites: J Neurosci. 2008 Feb 20;28(8):1833-40 (medline /18287500)
COMMENTS: Cites: J Neurosci. 2008 Feb 27;28(9):2075-88 (medline /18305242)
COMMENTS: Cites: Neurology. 1968 Jul;18(7):671-80 (medline /4233749)
COMMENTS: Cites: Arch Neurol. 1982 Nov;39(11):684-6 (medline /7125995)
COMMENTS: Cites: Mol Cell Biol. 1995 Oct;15(10):5434-43 (medline /7565694)
COMMENTS: Cites: Cell. 1995 Jan 13;80(1):155-65 (medline /7813012)
COMMENTS: Cites: Exp Neurol. 1995 Feb;131(2):239-50 (medline /7895823)
COMMENTS: Cites: Cell. 1994 Jul 29;78(2):191-201 (medline /7913880)
COMMENTS: Cites: J Biol Chem. 1994 Apr 22;269(16):11873-7 (medline /8163486)
COMMENTS: Cites: Genomics. 1994 Jan 15;19(2):388-90 (medline /8188273)
COMMENTS: Cites: Genes Dev. 1993 Dec;7(12B):2609-17 (medline /8276243)
COMMENTS: Cites: Biochim Biophys Acta. 1993 Jul 28;1178(1):117-20 (medline /8392375)
COMMENTS: Cites: Cell. 1999 Jun 25;97(7):865-75 (medline /10399915)
COMMENTS: Cites: Neuron. 1999 Jul;23(3):487-98 (medline /10433261)
COMMENTS: Cites: Nature. 1999 Sep 2;401(6748):69-73 (medline /10485706)
COMMENTS: Cites: Nature. 1999 Sep 9;401(6749):161-4 (medline /10490024)
COMMENTS: Cites: Nature. 1999 Sep 9;401(6749):164-8 (medline /10490025)
COMMENTS: Cites: J Comp Neurol. 2000 Jan 3;416(1):112-25 (medline /10578106)
COMMENTS: Cites: Nature. 1999 Nov 25;402(6760):425-9 (medline /10586884)
COMMENTS: Cites: Neuron. 1999 Nov;24(3):659-72 (medline /10595517)
COMMENTS: Cites: Nat Genet. 2000 Apr;24(4):391-5 (medline /10742104)
COMMENTS: Cites: J Neurosci. 2000 May 1;20(9):3206-13 (medline /10777785)
COMMENTS: Cites: J Biol Chem. 2000 Jul 28;275(30):23134-8 (medline /10833507)
COMMENTS: Cites: Cell. 2000 May 26;101(5):485-98 (medline /10850491)
COMMENTS: Cites: Acta Neuropathol. 2000 Aug;100(2):138-44 (medline /10963360)
COMMENTS: Cites: J Comp Neurol. 2000 Oct 2;425(4):495-509 (medline /10975876)
COMMENTS: Cites: Nature. 2001 Oct 4;413(6855):519-23 (medline /11586359)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1604-9 (medline /11818550)
COMMENTS: Cites: Cell. 2002 May 17;109(4):497-508 (medline /12086606)
COMMENTS: Cites: Dev Neurosci. 2002;24(1):24-34 (medline /12145408)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12236-41 (medline /12221286)
COMMENTS: Cites: J Cell Biol. 2003 Mar 17;160(6):939-49 (medline /12642616)
COMMENTS: Cites: Nat Immunol. 2003 Jun;4(6):533-9 (medline /12717433)
COMMENTS: Cites: Science. 2003 Aug 1;301(5633):646-9 (medline /12893943)
COMMENTS: Cites: Science. 2003 Aug 8;301(5634):839-42 (medline /12907804)
COMMENTS: Cites: Cell. 1992 Jan 24;68(2):283-302 (medline /1346368)
COMMENTS: Cites: Science. 2003 Oct 31;302(5646):841 (medline /14593171)
COMMENTS: Cites: EMBO J. 2003 Dec 15;22(24):6665-74 (medline /14657037)
COMMENTS: Cites: Nat Neurosci. 2004 Feb;7(2):145-52 (medline /14730308)
COMMENTS: Cites: J Neurosci Res. 2004 Feb 1;75(3):307-19 (medline /14743444)
COMMENTS: Cites: Neuron. 2004 Jul 8;43(1):19-30 (medline /15233914)
COMMENTS: Cites: Cell. 2004 Jul 9;118(1):4-7 (medline /15242639)
COMMENTS: Cites: Cell. 2004 Jul 23;118(2):257-70 (medline /15260994)
COMMENTS: Cites: J Biol Chem. 2004 Oct 29;279(44):45951-6 (medline /15322088)
COMMENTS: Cites: Exp Neurol. 2004 Nov;190(1):122-32 (medline /15473986)
COMMENTS: Cites: Science. 2004 Oct 22;306(5696):698-701 (medline /15499021)
COMMENTS: Cites: J Neurosci. 2005 Jan 5;25(1):164-72 (medline /15634778)
COMMENTS: Cites: Ann Neurol. 2005 Feb;57(2):236-51 (medline /15668976)
COMMENTS: Cites: Neurology. 1992 May;42(5):1037-46 (medline /1579227)
COMMENTS: Cites: FEBS J. 2005 May;272(9):2276-91 (medline /15853812)
COMMENTS: Cites: Neuron. 2005 May 5;46(3):433-44 (medline /15882643)
COMMENTS: Cites: Hum Mol Genet. 2005 Jul 1;14(13):1709-25 (medline /15888489)
COMMENTS: Cites: Nature. 2005 Jun 16;435(7044):944-7 (medline /15959514)
COMMENTS: Cites: Cell. 2005 Nov 4;123(3):477-91 (medline /16269338)
COMMENTS: Cites: Nat Genet. 2006 Apr;38(4):411-3 (medline /16501576)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):6007-12 (medline /16581901)
ABSTRACT: Different somatic motor neuron subpopulations show a differential vulnerability to degeneration in diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and spinobulbar muscular atrophy. Studies in mutant superoxide dismutase 1 over-expressing amyotrophic lateral sclerosis model mice indicate that initiation of disease is intrinsic to motor neurons, while progression is promoted by astrocytes and microglia. Therefore, analysis of the normal transcriptional profile of motor neurons displaying differential vulnerability to degeneration in motor neuron disease could give important clues to the mechanisms of relative vulnerability. Global gene expression profiling of motor neurons isolated by laser capture microdissection from three anatomical nuclei of the normal rat, oculomotor/trochlear (cranial nerve 3/4), hypoglossal (cranial nerve 12) and lateral motor column of the cervical spinal cord, displaying differential vulnerability to degeneration in motor neuron disorders, identified enriched transcripts for each neuronal subpopulation. There were striking differences in the regulation of genes involved in endoplasmatic reticulum and mitochondrial function, ubiquitination, apoptosis regulation, nitrogen metabolism, calcium regulation, transport, growth and RNA processing; cellular pathways that have been implicated in motor neuron diseases. Confirmation of genes of immediate biological interest identified differential localization of insulin-like growth factor II, guanine deaminase, peripherin, early growth response 1, soluble guanylate cyclase 1A3 and placental growth factor protein. Furthermore, the cranial nerve 3/4-restricted genes insulin-like growth factor II and guanine deaminase protected spinal motor neurons from
1   ...   78   79   80   81   82   83   84   85   ...   151


The database is protected by copyright ©dentisty.org 2016
send message

    Main page