Supplemental References



Download 157.64 Kb.
Date23.12.2017
Size157.64 Kb.
Supplemental References

e1. Kurlansik SL, Ibay AD. Seasonal affective disorder. Am Fam Physician 2012;86:1037-1041.

e2. Law RLSE. Canadian Consensus Guidelines for the Treatment of Seasonal Affective Disorder; Clinical and Academic Publishing, BC, CA. 1999.

e3. Hebert M, Beattie, C.W., Tam, E.M., Yatham, L.N., Lam, R.W. Electroretinography in patients with winter seasonal affective disorder. Psychiatric Research 2004;127:27-34.

e4. Roecklein KA, Wong PM, Miller MA, Donofry SD, Kamarck ML, Brainard GC. Melanopsin, photosensitive ganglion cells, and seasonal affective disorder. Neurosci Biobehav Rev 2013;37:229-239.

e5. Lewy AJ, Lefler BJ, Emens JS, Bauer VK. The circadian basis of winter depression. Proc Natl Acad Sci U S A 2006;103:7414-7419.

e6. Wehr TA, Duncan WC, Jr., Sher L, et al. A circadian signal of change of season in patients with seasonal affective disorder. Arch Gen Psychiatry 2001;58:1108-1114.

e7. Reme C, Terman M, Wirz-Justice A. Are deficient retinal photoreceptor renewal mechanisms involved in the pathogenesis of winter depression? Arch Gen Psychiatry 1990;47:878-879.

e8. Roecklein KA, Rohan KJ, Duncan WC, et al. A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder. J Affect Disord 2009;114:279-285.

e9. Roecklein KA, Wong PM, Franzen PL, et al. Melanopsin gene variations interact with season to predict sleep onset and chronotype. Chronobiol Int 2012;29:1036-1047.

e10. Anderson JL, Glod CA, Dai J, Cao Y, Lockley SW. Lux vs. wavelength in light treatment of Seasonal Affective Disorder. Acta Psychiatr Scand 2009;120:203-212.

e11. Strong RE, Marchant BK, Reimherr FW, Williams E, Soni P, Mestas R. Narrow-band blue-light treatment of seasonal affective disorder in adults and the influence of additional nonseasonal symptoms. Depress Anxiety 2009;26:273-278.

e12. Esquiva G, Gonzalez-Mendez, I., Fernandez-Sanchez, L., Garcia-Martin, E., Pinilla, I., Garcia-Fernandez, J., et al. Degeneration of melanopsin photosensitive retinal ganglion cells in human retinas with aging and in animal models of retinitis pigmentosa. ARVO meeting, poster no 680/D744 2010.

e13. Johnson BM, M; Sadun AA. Age-related decline of human optic nerve axon populations. Age 1987;10:5-9.

e14. Semo M, Lupi D, Peirson SN, Butler JN, Foster RG. Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 2003;18:3007-3017.

e15. Dijk DJ, Duffy JF, Czeisler CA. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol Int 2000;17:285-311.

e16. Cajochen C, Munch M, Knoblauch V, Blatter K, Wirz-Justice A. Age-related changes in the circadian and homeostatic regulation of human sleep. Chronobiol Int 2006;23:461-474.

e17. Wu YH, Swaab DF. Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer's disease. Sleep Med 2007;8:623-636.

e18. La Morgia C, Ross-Cisneros FN, Hannibal J, Montagna P, Sadun AA, Carelli V. Melanopsin-expressing retinal ganglion cells: implications for human diseases. Vision Res 2011;51:296-302.

e19. Turner PL, Mainster MA. Circadian photoreception: ageing and the eye's important role in systemic health. Br J Ophthalmol 2008;92:1439-1444.

e20. Chakravarthy U, Evans J, Rosenfeld PJ. Age related macular degeneration. BMJ 2010;340:c981.

e21. Altimus CM, Guler AD, Villa KL, McNeill DS, Legates TA, Hattar S. Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci U S A 2008;105:19998-20003.

e22. Lupi D, Oster H, Thompson S, Foster RG. The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci 2008;11:1068-1073.

e23. Lenaers G, Hamel C, Delettre C, et al. Dominant optic atrophy. Orphanet Journal of Rare Diseases 2012;7.

e24. Man PY, Turnbull DM, Chinnery PF. Leber hereditary optic neuropathy. J Med Genet 2002;39:162-169.

e25. Mroczek-Tonska K, Kisiel B, Piechota J, Bartnik E. Leber hereditary optic neuropathy--a disease with a known molecular basis but a mysterious mechanism of pathology. J Appl Genet 2003;44:529-538.

e26. Newman NJ, Biousse V, David R, et al. Prophylaxis for second eye involvement in leber hereditary optic neuropathy: an open-labeled, nonrandomized multicenter trial of topical brimonidine purite. Am J Ophthalmol 2005;140:407-415.

e27. Tonska K, Kodron A, Bartnik E. Genotype-phenotype correlations in Leber hereditary optic neuropathy. Biochim Biophys Acta 2010;1797:1119-1123.

e28. Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 2004;23:53-89.

e29. Wakakura M, Yokoe J. Evidence for preserved direct pupillary light response in Leber's hereditary optic neuropathy. Br J Ophthalmol 1995;79:442-446.

e30. Kawasaki A, Herbst K, Sander B, Milea D. Selective wavelength pupillometry in Leber hereditary optic neuropathy. Clin Experiment Ophthalmol 2010;38:322-324.

e31. Moura AL, Nagy BV, La Morgia C, et al. The pupil light reflex in Leber's hereditary optic neuropathy: evidence for preservation of melanopsin-expressing retinal ganglion cells. Invest Ophthalmol Vis Sci 2013;54:4471-4477.

e32. Atlasz T, Szabadfi K, Kiss P, et al. PACAP-mediated neuroprotection of neurochemically identified cell types in MSG-induced retinal degeneration. J Mol Neurosci 2008;36:97-104.

e33. Seki T, Itoh H, Nakamachi T, et al. Suppression of rat retinal ganglion cell death by PACAP following transient ischemia induced by high intraocular pressure. J Mol Neurosci 2011;43:30-34.

e34. Jean-Louis G, Zizi F, Lazzaro DR, Wolintz AH. Circadian rhythm dysfunction in glaucoma: A hypothesis. J Circadian Rhythms 2008;6:1.

e35. Drouyer E, Dkhissi-Benyahya O, Chiquet C, et al. Glaucoma alters the circadian timing system. PLoS One 2008;3:e3931.

e36. Wang HZ, Lu QJ, Wang NL, Liu H, Zhang L, Zhan GL. Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model. Chin Med J (Engl) 2008;121:1015-1019.

e37. Feigl BM, D; Thomas, R; Zele AJ. Intrinsically Photosensitive (Melanopsin) Retinal Ganglion Cell Function in Glaucoma. Investigative Ophthalmology & visual science 2011;52:4362-4367.

e38. Perez-Rico C, de la Villa P, Arribas-Gomez I, Blanco R. Evaluation of functional integrity of the retinohypothalamic tract in advanced glaucoma using multifocal electroretinography and light-induced melatonin suppression. Exp Eye Res 2010;91:578-583.

e39. Cooper HM, Drouyer, E., Dkhissi-Benyahya, O., Gronfier, C., Chiquet, C., WoldeMussie, E., et al. Effects of glaucoma on the circadian timing system in mice and men. ARVO meeting, poster no 182/A327 2008.

e40. Noseda R, Kainz V, Jakubowski M, et al. A neural mechanism for exacerbation of headache by light. Nature Neuroscience 2010;13:239-U128.

e41. Markowitz S, Saito K, Moskowitz MA. Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids. A possible mechanism of action in vascular headache. Cephalalgia 1988;8:83-91.

e42. Matynia A, Parikh, S., Chen, B., Nusinowitz, S., & Gorin, M. B. Behavioral and pharmacological analysis of light associated allodynia. ARVO meeting, poster no 675/D739 2010.

e43. Semo M, Gias, C., Lawrence, J. M., Ahmado, A., Coffey, P. J., & Vugler, A. A. . Melanopsin mediated photophobia in adult rodless and coneless mice. ARVO 2010, poster no 674/D738 2010.

e44. Kardon R. Melanopsin and its role in photophobia. Acta Ophthalmologica Special Issue: Abstracts from the 2012 European Association for Vision and Eye Research Conference 2012;90.

e45. C LCAEMTC. Effects of Stimulating Melanopsin-Containing Retinal Ganglion Cells in Migraine Patients Using Multifocal Objective Pupillometry Neurology 2014;82:Supplement S39.009.

e46. Brown TM, Tsujimura S, Allen AE, et al. Melanopsin-based brightness discrimination in mice and humans. Curr Biol 2012;22:1134-1141.

e47. Ecker JL, Dumitrescu ON, Wong KY, et al. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 2010;67:49-60.

e48. Storchi R, Milosavljevic N, Eleftheriou CG, et al. Melanopsin-driven increases in maintained activity enhance thalamic visual response reliability across a simulated dawn. Proc Natl Acad Sci U S A 2015;112:E5734-5743.

e49. Tarttelin EE, Bellingham J, Bibb LC, et al. Expression of opsin genes early in ocular development of humans and mice. Exp Eye Res 2003;76:393-396.



e50. Weaver DR, Reppert SM. Definition of the developmental transition from dopaminergic to photic regulation of c-fos gene expression in the rat suprachiasmatic nucleus. Brain Res Mol Brain Res 1995;33:136-148.








Share with your friends:


The database is protected by copyright ©dentisty.org 2019
send message

    Main page