N = Number of samples per strata Second, determine the location population estimate (µ) as, µ= Σ[X_{x}(φ_{x}), X_{y}(φ_{ y}), X_{z}(φ_{z})] where, φ = total area of sampled location habitat, for each depth stratum (x, y, and z) Third, calculate the 95% confidence intervals of the locations population estimates as: CI= Σ[(_{x} ± 1.96 (σ_{x}/√n_{x}),(_{y} ± 1.96 (σ_{y}/√n σ_{y}),_{z} ± 1.96 (σ_{z}/√n σ_{z})] If all locations where suitable white abalone habitat exists are sampled, then the global population (µ_{t}), that is all members of the species, can be calculated as, µ_{t} = µ_{i} + µ_{ii} + µ_{iii}…….. µ_{n} and the confidence we have in this estimate can be expressed in confidence intervals as, CI_{t} = CI_{i} + CI_{ii} + CI_{iii}……….CI_{n}