Name of journal: World Journal of Methodology esps manuscript no: 7544 Columns: review adult stem cell-based apexogenesis

Download 109.24 Kb.
Date conversion26.11.2016
Size109.24 Kb.
1   2   3


The concept of ‘revascularization’ describes the clinical healing of periapical abscesses and continued root formation in immature teeth with nonvital pulps[91]. However, it does not encompass the actual healing and repair process that takes place in these clinical cases[92].

The revascularization method assumes that the root canal space has been disinfected and the formation of blood clot can produce a matrix (e.g., fibrin) that traps cells capable of initiating new tissue formation. Its treatment effect is different from apexification because not only is the apex closed but the canal walls are thicker as well. It is also different from apexogenesis which also accomplishes a closed apex and thicker dentinal walls result from the remaining vital root pulp.

With regard to revascularization, all the studies report the continued thickening of the dentinal walls and subsequent apical closure. The root length is increased by the growth of cementum. Connective tissue similar to periodontal ligament is also present in the canal space[93].

The success of root canal revascularization is mainly due to the following factors: firstly, the immature avulsed tooth has an open apex, short root and intact but necrotic pulp tissue, so that the new tissue has easy access to the root canal system and a relatively short distance for proliferation to reach the coronal pulp horn. The speed with which the tissue completely revascularizes the pulp space is important because bacteria from outside are continually attempting to enter the pulp space. The ischemically necrotic pulp acts as a scaffold into which the new tissue grows, and the fact that the usually intact crown slows bacterial penetration because the only access for bacteria to the pulp is through cracks or enamel defects. Thus, the race between proliferation of new tissue and infection of the pulp space favors the new tissue formation. Secondly, minimum instrumentation preserves the viable pulp tissue which contributes to further development of open apex root. Thirdly, young patients have greater healing capacity and more stem cell regenerative potential. [94]

The greatest benefit of such biological approaches for dental tissue restoration over many conventional dental materials lies in the fact that reparative matrices become an integral part of the tooth, avoiding any of the problems arose from restoration retention and possible marginal bacterial microleakage. Moreover, this treatment approach strengthens the root walls of immature teeth.


Pulp regeneration is not only to solve the aesthetic issues of the conventional root canal filling materials, but also to achieve the regeneration of the whole tooth vitality and restore the normal function of teeth. Dental pulp nerve regeneration can produce a protective response to maintain long-term survival of teeth when it is stimulated by mechanical, temperature, or chemical stimuli.


Apexogenesis should be performed in three kinds of dental diseases of immature teeth, including reversible pulpitis, irreversible pulpitis and apical periodontitis. Pulp capping is usually applied for treating reversible pulpitis. The treatment of exposed vital pulp is accomplished by sealing the pulpal wound with CH or MTA to facilitate the reparative dentin formation. Irreversible pulpitis is often cured by pulpotomy following the steps below: (1) cervical pulpotomy to remove diseased pulp; 2) Root canal disinfection with sodium hypochlorite; (3) place a thin layer of MTA in the crown aspect of the canal with a moist cotton pellet for 1 wk; (4) remove the cotton pellet and seal the root canal access with resin-modified glass ionomer; and (5) restore the tooth with composite resin.

Traditional multiple-visit apexification with CH is the treatment choice of immature teeth suffering from periapical periodontitis, which can induce the formation of an apical hard tissue barrier. Due to the disadvantages listed above, regeneration management is recommended. Here are the protocols: (1) disinfect the root canal with sodium hypochlorite; (2) apply antibiotic paste (ciprofloxacin, metronidazole and minocycline) for 4 wk; (3) stir a file beyond the tooth apex to cause bleeding in the canal; (4) place a thin layer of MTA in the crown aspect of the canal; (5) seal the root canal access with resin-modified glass ionomer; and (6) restore the tooth with composite resin[33,95-97]. It is recommended that pulp regeneration should not be delivered to deciduous teeth as it may risk the retaining teeth and impair the eruption pattern of adult teeth[38,98].

Nowadays, various clinical studies are conducted using mesenchymal stem cells as transplants for treatment or to improve the functional outcomes. Stem cell-based therapies have drawn more attention to healing dental diseases. With the application of effective dental materials, stem cell-based apexogenesis may help a number of immature teeth develop. However, further work is required to increase the success rate of apexogenesis, so that this method can be widely used in the clinic.


Huo N, Tang L, Yang Z, Qian H, Wang Y, Han C, Gu Z, Duan Y, Jin Y. Differentiation of dermal multipotent cells into odontogenic lineage induced by embryonic and neonatal tooth germ cell-conditioned medium. Stem Cells Dev 2010; 19: 93-104 [PMID: 19469666 DOI: 10.1089/scd.2009.0048]

Fawzy El-Sayed KM, Dörfer C, Fändrich F, Gieseler F, Moustafa MH, Ungefroren H. Adult mesenchymal stem cells explored in the dental field. Adv Biochem Eng Biotechnol 2013; 130: 89-103 [PMID: 22936399 DOI: 10.1007/10_2012_151]

Martens W, Bronckaers A, Politis C, Jacobs R, Lambrichts I. Dental stem cells and their promising role in neural regeneration: an update. Clin Oral Investig 2013; 17: 1969-1983 [PMID: 23846214 DOI: 10.1007/s00784-013-1030-3]

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317 [PMID: 16923606]

Roobrouck VD, Ulloa-Montoya F, Verfaillie CM. Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res 2008; 314: 1937-1944 [PMID: 18439579 DOI: 10.1016/j.yexcr.2008.03.006]

Ohishi M, Schipani E. Bone marrow mesenchymal stem cells. J Cell Biochem 2010; 109: 277-282 [PMID: 19950205 DOI: 10.1002/jcb.22399]

Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004; 116: 639-648 [PMID: 15006347 DOI: 10.1016/S0092-8674(04)00208-9]

8 . Mesenchymal Stem Cells Migration Homing and Tracking. Stem Cells Int 2013; 2013: 130763 [PMID: 24194766 DOI: 10.1155/2013/130763]

Verfaillie CM, Pera MF, Lansdorp PM. Stem cells: hype and reality. Hematology Am Soc Hematol Educ Program 2002; 2002: 369-391 [PMID: 12446433 DOI: 10.1182/asheducation-2002.1.369]

10 Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974; 17: 331-340 [PMID: 4150881 DOI: 10.1097/00007890-197404000-00001]

11 Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luriá EA, Ruadkow IA. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974; 2: 83-92 [PMID: 4455512]

12 Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9: 641-650 [PMID: 1870029 DOI: 10.1002/jor.1100090504]

13 Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71-74 [PMID: 9082988 DOI: 10.1126/science.276.5309.71]

14 Shin DA, Pennant WA, Yoon do H, Ha Y, Kim KN. Co-transplantation of bone marrow-derived mesenchymal stem cells and nanospheres containing FGF-2 improve cell survival and neurological function in the injured rat spinal cord. Acta Neurochir (Wien) 2014; 156: 297-303 [PMID: 24352373 DOI: 10.1007/s00701-013-1963-y]

15 Koga H, Engebretsen L, Brinchmann JE, Muneta T, Sekiya I. Mesenchymal stem cell-based therapy for cartilage repair: a review. Knee Surg Sports Traumatol Arthrosc 2009; 17: 1289-1297 [PMID: 19333576 DOI: 10.1007/s00167-009-0782-4]

16 de Almeida DC, Donizetti-Oliveira C, Barbosa-Costa P, Origassa CS, Câmara NO. In Search of Mechanisms Associated with Mesenchymal Stem Cell-Based Therapies for Acute Kidney Injury. Clin Biochem Rev 2013; 34: 131-144 [PMID: 24353358]

17 Hughey CC, James FD, Ma L, Bracy DP, Wang Z, Wasserman DH, Rottman JN, Shearer J. Diminishing impairments in glucose uptake, mitochondrial content, and ADP-stimulated oxygen flux by mesenchymal stem cell therapy in the infarcted heart. Am J Physiol Cell Physiol 2014; 306: C19-C27 [PMID: 24196528 DOI: 10.1152/ajpcell.00156.2013]

18 Yuan S, Jiang T, Sun L, Zheng R, Ahat N, Zhang Y. The role of bone marrow mesenchymal stem cells in the treatment of acute liver failure. Biomed Res Int 2013; 2013: 251846 [PMID: 24312909 DOI: 10.1155/2013/251846]

19 Seltzer S, Krasner P. Endodontology: biologic considerations in endodontic procedures: Lea and Febiger Philadelphia; 1988: 1–30.

20 Sheehy EC, Roberts GJ. Use of calcium hydroxide for apical barrier formation and healing in non-vital immature permanent teeth: a review. Br Dent J 1997; 183: 241-246 [PMID: 9364090 DOI: 10.1038/sj.bdj.4809477]

21 Nosrat A, Asgary S. Apexogenesis treatment with a new endodontic cement: a case report. J Endod 2010; 36: 912-914 [PMID: 20416445 DOI: 10.1016/j.joen.2009.11.025]

22 Forghani M, Parisay I, Maghsoudlou A. Apexogenesis and revascularization treatment procedures for two traumatized immature permanent maxillary incisors: a case report. Restor Dent Endod 2013; 38: 178-181 [PMID: 24010086 DOI: 10.5395/rde.2013.38.3.178]

23 Huang GT. A paradigm shift in endodontic management of immature teeth: conservation of stem cells for regeneration. J Dent 2008; 36: 379-386 [PMID: 18420332 DOI: 10.1016/j.jdent.2008.03.002]

24 Shabahang S. Treatment options: apexogenesis and apexification. J Endod 2013; 39: S26-S29 [PMID: 23439042 DOI: 10.1016/j.joen.2012.11.046]

25 Jung IY, Kim ES, Lee CY, Lee SJ. Continued development of the root separated from the main root. J Endod 2011; 37: 711-714 [PMID: 21496677 DOI: 10.1016/j.joen.2011.01.015]

26 Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 2011; 56: 709-721 [PMID: 21227403 DOI: 10.1016/j.archoralbio.2010.12.008]

27 Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 2007; 99: 465-474 [PMID: 17371295 DOI: 10.1042/BC20070013]

28 Li ZY, Chen L, Liu L, Lin YF, Li SW, Tian WD. Odontogenic potential of bone marrow mesenchymal stem cells. J Oral Maxillofac Surg 2007; 65: 494-500 [PMID: 17307598 DOI: 10.1016/j.joms.2006.09.018]

29 Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F. Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 2001; 86: 1099-1100 [PMID: 11602418]

30 Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 2009; 88: 792-806 [PMID: 19767575 DOI: 10.1177/0022034509340867]

31 Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 2006; 12: 2813-2823 [PMID: 17518650 DOI: 10.1089/ten.2006.12.2813]

32 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147 [PMID: 10102814 DOI: 10.1126/science.284.5411.143]

33 Moreno-Hidalgo M, Caleza‐Jimenez C, Mendoza‐Mendoza A, Iglesias‐Linares A. Revascularization of immature permanent teeth with apical periodontitis. Int Endod J 2013; [PMID: 23889557 DOI: 10.1111/iej.12154]

34 Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev ; 20: 419-427 [PMID: 19926330 DOI: 10.1016/j.cytogfr.2009.10.002]

35 Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000; 28: 875-884 [PMID: 10989188 DOI: 10.1016/S0301-472X(00)00482-3]

36 Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007; 131: 324-336 [PMID: 17956733 DOI: 10.1016/j.cell.2007.08.025]

37 Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3: 301-313 [PMID: 18786417 DOI: 10.1016/j.stem.2008.07.003]

38 Sakai VT, Moretti AB, Oliveira TM, Fornetti AP, Santos CF, Machado MA, Abdo RC. Pulpotomy of human primary molars with MTA and Portland cement: a randomised controlled trial. Br Dent J 2009; 207: E5; discussion 128-129 [PMID: 19629145 DOI: 10.1038/sj.bdj.2009.665]

39 Battula VL, Bareiss PM, Treml S, Conrad S, Albert I, Hojak S, Abele H, Schewe B, Just L, Skutella T, Bühring HJ. Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 2007; 75: 279-291 [PMID: 17288545 DOI: 10.1111/j.1432-0436.2006.00139.x]

40 Gronthos S, Zannettino AC. A method to isolate and purify human bone marrow stromal stem cells. Methods Mol Biol 2008; 449: 45-57 [PMID: 18370082 DOI: 10.1007/978-1-60327-169-1_3]

41 Chen S, Liu Z, Tian N, Zhang J, Yei F, Duan B, Zhu Z, Lin S, Kwan TW. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 2006; 18: 552-556 [PMID: 17090821]

42 Ohazama A, Modino SA, Miletich I, Sharpe PT. Stem-cell-based tissue engineering of murine teeth. J Dent Res 2004; 83: 518-522 [PMID: 15218039 DOI: 10.1177/154405910408300702]

43 Kawaguchi H, Hirachi A, Hasegawa N, Iwata T, Hamaguchi H, Shiba H, Takata T, Kato Y, Kurihara H. Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol 2004; 75: 1281-1287 [PMID: 15515346 DOI: 10.1902/jop.2004.75.9.1281]

44 Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000; 97: 13625-13630 [PMID: 11087820 DOI: 10.1073/pnas.240309797]

45 Huang GT, Sonoyama W, Chen J, Park SH. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 2006; 324: 225-236 [PMID: 16440193 DOI: 10.1007/s00441-005-0117-9]

46 Marchionni C, Bonsi L, Alviano F, Lanzoni G, Di Tullio A, Costa R, Montanari M, Tazzari PL, Ricci F, Pasquinelli G, Orrico C, Grossi A, Prati C, Bagnara GP. Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol 2009; 22: 699-706 [PMID: 19822086]

47 Nakashima M, Iohara K, Sugiyama M. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration. Cytokine Growth Factor Rev 2009; 20: 435-440 [PMID: 19896887 DOI: 10.1016/j.cytogfr.2009.10.012]

48 Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 2008; 26: 1787-1795 [PMID: 18499892 DOI: 10.1634/stemcells.2007-0979]

49 Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 2008; 34: 166-171 [PMID: 18215674 DOI: 10.1016/j.joen.2007.11.021]

50 Wu J, Huang GT, He W, Wang P, Tong Z, Jia Q, Dong L, Niu Z, Ni L. Basic fibroblast growth factor enhances stemness of human stem cells from the apical papilla. J Endod 2012; 38: 614-622 [PMID: 22515889 DOI: 10.1016/j.joen.2012.01.014]

51 Chueh LH, Huang GT. Immature teeth with periradicular periodontitis or abscess undergoing apexogenesis: a paradigm shift. J Endod 2006; 32: 1205-1213 [PMID: 17174685 DOI: 10.1016/j.joen.2006.07.010]

52 Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 2008; 34: 645-651 [PMID: 18498881 DOI: 10.1016/j.joen.2008.03.001]

53 Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 2003; 100: 5807-5812 [PMID: 12716973 DOI: 10.1073/pnas.0937635100]

54 Gosau M, Götz W, Felthaus O, Ettl T, Jäger A, Morsczeck C. Comparison of the differentiation potential of neural crest derived progenitor cells from apical papilla (dNC-PCs) and stem cells from exfoliated deciduous teeth (SHED) into mineralising cells. Arch Oral Biol 2013; 58: 699-706 [PMID: 23261253 DOI: 10.1016/j.archoralbio.2012.11.004]

55 Wang X, Sha XJ, Li GH, Yang FS, Ji K, Wen LY, Liu SY, Chen L, Ding Y, Xuan K. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol 2012; 57: 1231-1240 [PMID: 22455989 DOI: 10.1016/j.archoralbio.2012.02.014]

56 Park JC, Kim JM, Jung IH, Kim JC, Choi SH, Cho KS, Kim CS. Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: in vitro and in vivo evaluations. J Clin Periodontol 2011; 38: 721-731 [PMID: 21449989 DOI: 10.1111/j.1600-051X.2011.01716.x]

57 Beertsen W, McCulloch CA, Sodek J. The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 1997; 13: 20-40 [PMID: 9567922 DOI: 10.1111/j.1600-0757.1997.tb00094.x]

58 Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149-155 [PMID: 15246727 DOI: 10.1016/S0140-6736(04)16627-0]

59 Choi HD, Noh WC, Park JW, Lee JM, Suh JY. Analysis of gene expression during mineralization of cultured human periodontal ligament cells. J Periodontal Implant Sci 2011; 41: 30-43 [PMID: 21394295 DOI: 10.5051/jpis.2011.41.1.30]

60 Drees J, Felthaus O, Gosau M, Morsczeck C. Butyrate stimulates the early process of the osteogenic differentiation but inhibits the biomineralization in dental follicle cells (DFCs). Odontology 2013; [PMID: 23836050 DOI: 10.1007/s10266-013-0117-2]

61 Aonuma H, Ogura N, Takahashi K, Fujimoto Y, Iwai S, Hashimoto H, Ito K, Kamino Y, Kondoh T. Characteristics and osteogenic differentiation of stem/progenitor cells in the human dental follicle analyzed by gene expression profiling. Cell Tissue Res 2012; 350: 317-331 [PMID: 22890370 DOI: 10.1007/s00441-012-1477-6]

62 Takatalo MS, Tummers M, Thesleff I, Rönnholm R. Novel Golgi protein, GoPro49, is a specific dental follicle marker. J Dent Res 2009; 88: 534-538 [PMID: 19587158 DOI: 10.1177/0022034509338452]

63 Rezai Rad M, Wise GE, Brooks H, Flanagan MB, Yao S. Activation of proliferation and differentiation of dental follicle stem cells (DFSCs) by heat stress. Cell Prolif 2013; 46: 58-66 [PMID: 23278983 DOI: 10.1111/cpr.12004]

64 Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann KH. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005; 24: 155-165 [PMID: 15890265 DOI: 10.1016/j.matbio.2004.12.004]

65 Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T, Sampath Narayanan A. Cementum matrix formation in vivo by cultured dental follicle cells. Bone 2002; 31: 606-611 [PMID: 12477575 DOI: 10.1016/S8756-3282(02)00868-2]

66 Honda MJ, Imaizumi M, Tsuchiya S, Morsczeck C. Dental follicle stem cells and tissue engineering. J Oral Sci 2010; 52: 541-552 [PMID: 21206155 DOI: 10.2334/josnusd.52.541]

67 Lee Y. Effect of calcium hydroxide application time on dentin. Restor Dent Endod 2013; 38: 186 [PMID: 24010088 DOI: 10.5395/rde.2013.38.3.186]

68 Ji YM, Jeon SH, Park JY, Chung JH, Choung YH, Choung PH. Dental stem cell therapy with calcium hydroxide in dental pulp capping. Tissue Eng Part A 2010; 16: 1823-1833 [PMID: 20055661 DOI: 10.1089/ten.TEA.2009.0054]

69 Wang X, Jong G, Lin LM, Shimizu E. EphB-EphrinB interaction controls odontogenic/osteogenic differentiation with calcium hydroxide. J Endod 2013; 39: 1256-1260 [PMID: 24041387 DOI: 10.1016/j.joen.2013.06.016]

70 MITCHELL DF, SHANKWALKER GB. Osteogenic potential of calcium hydroxide and other materials in soft tissue and bone wounds. J Dent Res 1958; 37: 1157-1163 [PMID: 13611129 DOI: 10.1177/00220345580370061501]

71 da Silva RA, Leonardo MR, da Silva LA, de Castro LM, Rosa AL, de Oliveira PT. Effects of the association between a calcium hydroxide paste and 0.4% chlorhexidine on the development of the osteogenic phenotype in vitro. J Endod 2008; 34: 1485-1489 [PMID: 19026879 DOI: 10.1016/j.joen.2008.08.031]

72 Ruparel NB, Teixeira FB, Ferraz CC, Diogenes A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod 2012; 38: 1372-1375 [PMID: 22980180 DOI: 10.1016/j.joen.2012.06.018]

73 Huang GT. Apexification: the beginning of its end. Int Endod J 2009; 42: 855-866 [PMID: 19549154 DOI: 10.1111/j.1365-2591.2009.01577.x]

74 Cotti E, Esposito S, Jacobs R, Slagmolen P, Bakland LK. Comprehensive management of a complex traumatic dental injury. Dent Traumatol 2013; [Epub ahead of print] [PMID: 23998296 DOI: 10.1111/edt.12064]

75 Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol 2002; 18: 134-137 [PMID: 12110105 DOI: 10.1034/j.1600-9657.2002.00097.x]

76 Dammaschke T, Gerth HU, Züchner H, Schäfer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 2005; 21: 731-738 [PMID: 15935463 DOI: 10.1016/]

77 Dammaschke T, Stratmann U, Wolff P, Sagheri D, Schäfer E. Direct pulp capping with mineral trioxide aggregate: an immunohistologic comparison with calcium hydroxide in rodents. J Endod 2010; 36: 814-819 [PMID: 20416425 DOI: 10.1016/j.joen.2010.02.001]

78 Mente J, Geletneky B, Ohle M, Koch MJ, Friedrich Ding PG, Wolff D, Dreyhaupt J, Martin N, Staehle HJ, Pfefferle T. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod 2010; 36: 806-813 [PMID: 20416424 DOI: 10.1016/j.joen.2010.02.024]

79 Shabahang S, Torabinejad M, Boyne PP, Abedi H, McMillan P. A comparative study of root-end induction using osteogenic protein-1, calcium hydroxide, and mineral trioxide aggregate in dogs. J Endod 1999; 25: 1-5 [PMID: 10196834 DOI: 10.1016/S0099-2399(99)80388-4]

80 Guven EP, Yalvac ME, Sahin F, Yazici MM, Rizvanov AA, Bayirli G. Effect of dental materials calcium hydroxide-containing cement, mineral trioxide aggregate, and enamel matrix derivative on proliferation and differentiation of human tooth germ stem cells. J Endod 2011; 37: 650-656 [PMID: 21496665 DOI: 10.1016/j.joen.2011.02.008]

81 Accorinte Mde L, Holland R, Reis A, Bortoluzzi MC, Murata SS, Dezan E, Souza V, Alessandro LD. Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. J Endod 2008; 34: 1-6 [PMID: 18155482 DOI: 10.1016/j.joen.2007.09.012]

82 Mohammadi Z. Strategies to manage permanent non-vital teeth with open apices: a clinical update. Int Dent J 2011; 61: 25-30 [PMID: 21382030 DOI: 10.1111/j.1875-595X.2011.00005.x]

83 D'Antò V, Di Caprio MP, Ametrano G, Simeone M, Rengo S, Spagnuolo G. Effect of mineral trioxide aggregate on mesenchymal stem cells. J Endod 2010; 36: 1839-1843 [PMID: 20951297 DOI: 10.1016/j.joen.2010.08.010]

84 Paranjpe A, Smoot T, Zhang H, Johnson JD. Direct contact with mineral trioxide aggregate activates and differentiates human dental pulp cells. J Endod 2011; 37: 1691-1695 [PMID: 22099907 DOI: 10.1016/j.joen.2011.09.012]

85 Paranjpe A, Zhang H, Johnson JD. Effects of mineral trioxide aggregate on human dental pulp cells after pulp-capping procedures. J Endod 2010; 36: 1042-1047 [PMID: 20478462 DOI: 10.1016/j.joen.2010.02.013]

86 Seo MS, Hwang KG, Lee J, Kim H, Baek SH. The effect of mineral trioxide aggregate on odontogenic differentiation in dental pulp stem cells. J Endod 2013; 39: 242-248 [PMID: 23321238 DOI: 10.1016/j.joen.2012.11.004]

87 Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nör JE. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 2008; 34: 962-969 [PMID: 18634928 DOI: 10.1016/j.joen.2008.04.009]

88 Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81: 531-535 [PMID: 12147742 DOI: 10.1177/154405910208100806]

89 Rosa V, Zhang Z, Grande RH, Nör JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res 2013; 92: 970-975 [PMID: 24056227 DOI: 10.1177/0022034513505772]

90 Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 2010; 16: 605-615 [PMID: 19737072 DOI: 10.1089/ten.TEA.2009.0518]

91 Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent Traumatol 2001; 17: 185-187 [PMID: 11585146 DOI: 10.1034/j.1600-9657.2001.017004185.x]

92 Huang GT, Lin LM. Letter to the editor: comments on the use of the term "revascularization" to describe root regeneration. J Endod 2008; 34: 511; author reply 511-512 [PMID: 18436023 DOI: 10.1016/j.joen.2008.02.009]

93 Wang X, Thibodeau B, Trope M, Lin LM, Huang GT. Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis. J Endod 2010; 36: 56-63 [PMID: 20003936 DOI: 10.1016/j.joen.2009.09.039]

94 Bansal R, Bansal R. Regenerative endodontics: a state of the art. Indian J Dent Res 2011; 22: 122-131 [PMID: 21525690 DOI: 10.4103/0970-9290.79977]

95 Nosrat A, Seifi A, Asgary S. Regenerative endodontic treatment (revascularization) for necrotic immature permanent molars: a review and report of two cases with a new biomaterial. J Endod 2011; 37: 562-567 [PMID: 21419310 DOI: 10.1016/j.joen.2011.01.011]

96 Wigler R, Kaufman AY, Lin S, Steinbock N, Hazan-Molina H, Torneck CD. Revascularization: a treatment for permanent teeth with necrotic pulp and incomplete root development. J Endod 2013; 39: 319-326 [PMID: 23402501 DOI: 10.1016/j.joen.2012.11.014]

97 Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod 2004; 30: 196-200 [PMID: 15085044 DOI: 10.1097/00004770-200404000-00003]

98 Cardoso-Silva C, Barbería E, Maroto M, García-Godoy F. Clinical study of Mineral Trioxide Aggregate in primary molars. Comparison between Grey and White MTA-A long term follow-up (84 months). J Dent 2011; 39: 187-193 [PMID: 21144878DOI: 10.1016/j.jdent.2010.11.010]
P-Reviewers: Gopinath SCB, Mauro V S-Editor: Qi Y

1   2   3

The database is protected by copyright © 2016
send message

    Main page