Department of Clinical Education

Download 59.16 Kb.
Date conversion18.12.2016
Size59.16 Kb.

1301 Smile Way

York, PA 17404


Department of Clinical Education

Win the Battle Against Biofilm: Leverage the Power of Ultrasonics”


This course is based on current scientific literature and evidence based strategies to give the clinician practical guidelines regarding the use of ultrasonic instrumentation for nonsurgical periodontal therapy. Ultrasonic instrumentation techniques will be covered extensively following the dental hygiene process of care and utilizing hands-on activities.


The goal of this course is to enable the clinician to identify modifying factors related to nonsurgical periodontal instrumentation, manage patient discomfort appropriately, and improve ultrasonic instrumentation skills to facilitate thorough periodontal debridement and enhance treatment outcomes.


Upon completion of this course, participants will be able to:

  • Differentiate the advantages and limitations of the various technologies which drive power scaling units

  • Compare and contrast the three E’s of hand, sonic, and ultrasonic instrumentation techniques: effectiveness, efficiency, and ergonomics

  • Discuss current research findings which demonstrate the clinical advantages/benefits of ultrasonic instrumentation over manual instrumentation

  • Describe the technology of ultrasonics and define key terminology, including acoustic streaming, acoustical turbulence, cavitation, lavage, frequency, power and stroke pattern

  • Identify and assess pretreatment considerations for the use of ultrasonic instrumentation to include patient’s medical history, clinical indications, and contraindications

  • Incorporate appropriate pain management techniques to improve patient comfort and efficiency during instrumentation

  • Identify various modifying factors which influence and/or change instrumentation protocols such as root anatomy, furcations and oral conditions.

  • List criteria for the appropriate selection of ultrasonic inserts, both standard and modified.

  • Demonstrate the correct technique for utilization of the ultrasonic scaler to include insert and power selection, lavage flow, grasp, fulcrum, tip adaptation, and stroke


  1. Evolution of Instrumentation for Nonsurgical Periodontal Therapy

  2. Assessment

    1. Medical History

    2. Periodontal Status

    3. Morphology

  3. Diagnose and Plan Instrumentation Approach

  4. Implementation of Instrumentation Strategies

    1. Science of Ultrasonic Technology

    2. Ultrasonic Tip and Insert Designs

    3. Clinical Application of Ultrasonic Instrumentation

  5. Evaluation of Therapy

  6. Ultrasonic Lavage

Ultrasonics: An Evidence Based Approach to Nonsurgical Periodontal Therapy’




Patient Assessment – assessment of the patient’s chief complaint, current periodontal and dental disease status
Biofilm Assessment – assessment of the quality and quantity of the biofilm present
Morphology Assessment - assessment of the root morphology to include furcations, challenge areas and root adaptability
Cementum Assessment – assessment of the cementum at the location of the biofilm
American Academy of Periodontally Periodontal Classification, 1999, Web site:

  • Gingival diseases

    • Plaque induced

    • Non-plaque induced

  • Chronic periodontitis

  • Aggressive periodontitis

  • Periodontitis as a manifestation of systemic diseases

  • Necrotizing periodontal diseases

  • Abscesses of the periodontium

  • Periodontitis associated with endodontic lesions

  • Developmental or acquired deformities and conditions

Nonsurgical Periodontal Therapy

  • Periodontal debridement

  • Lavage/Irrigation

  • Sustained-release antibiotic/antimicrobial agent

  • Remove iatrogenic biofilm retainers

  • Concurrent dental therapy

Periodontal Debridement

  • Therapeutic interventions

    • Scaling

    • Root planing

    • Root debridement

  • Definitive or complete treatment

  • Preparatory or initial therapy prior to surgery

Instrumentation Approach

  • Diagnostic instrumentation

  • Ultrasonic periodontal debridement including lavage

  • Evaluation - hand and/or ultrasonic

  • Ultrasonic subgingival irrigation/rinse

Hand Instrumentation
Choices in Hand Instrument Selection


  • Terminal shank

  • Work to base of pocket

  • Engage 1/3

  • Apply lateral pressure

Ultrasonic Instrumentation

Ultrasonic Technology

Acoustic streaming

  • Forceful fluid flow

Acoustic turbulence

  • Fluid moves in a swirling manner


  • Bubbles implode creating a shock wave

Sonic technology

  • Compressed air runs handpiece to activate tip

  • 2,500 to 7,000 cps

  • Circular/elliptical movement

  • All sides are active

Piezoelectric technology

  • Electrical energy activates piezo-ceramic disks in handpiece

  • 25,000 to 50,000 cps

  • Linear movement

Magnetostrictive technology

  • Electrical energy is applied to coils in the handpiece

  • 25,000 to 30,000 cps

  • Elliptical movement

  • All sides are active


  • Number of cycles (one complete stroke path) per second

  • Frequency correlates to the active tip area

  • Example: 30k = 4.2mm of active tip area


Ultrasonic Guidelines


Standard Design

Power – Low to High

Slim-diameter Design

Power – Low to Medium

Perio Specialty Design



Heavy stain or calculus


Light calculus and/or deplaquing in pockets less than 4mm


Furcation access

Power – Low to Medium

Single bend

Light to moderate calculus

Modified / Curved

Light calculus and/or deplaquing in pockets greater than 4mm


Implant care

Power - Low

Double bend

Light to moderate calculus

Dental Specialty Inserts

1. Endodontic – canal debridement, cleansing, irrigation; for

dental use only

2. Diamond Coat – removal of tenacious calculus and soft tissue

in surgical treatment settings; for dental use only

Triple bend

Moderate to heavy tenacious calculus


Standard Design

Thin Design


Large scaling tips and bladed tips - tenacious calculus – medium to high power

light to moderate calculus – medium power

Furcation and deep periodontal pockets – utilize on high power to remove calculus deposites from root surface and to prevent burnishing

Specialty Tips

1. Thin Diamond Coated Tips

~ fine scaling and root planing in narrow furcations

~ can be utilized with Dental Endoscope for

subgingival areas

~ low power

2. Furcation ball tips – furcation areas

~ low power

3. Implant Carbon Composite Tip/ Restorative Margins

Clinical Application


  • Modified pen grasp and fulcrum

Stroke Patterns

  • Vertical or tapping motion for moderate to heavy calculus

  • Horizontal or sweeping motion for light calculus and/or deplaquing

  • Oblique for interproximal and contact areas

Vertical Technique

  • Positioned like a probe

  • Vertical or horizontal strokes

Oblique Technique

Modified / Curved Design Technique

  • Subgingival application in pockets greater than 4mm

Hand Instrument Evaluation

  • Assess with probe, explorer, and/or inactivated tip

Ultrasonic Lavage/Rinse

  • Water

  • Chlorhexidine

  • Povidone-iodine

  • Other

Armitage, G. C. (1999, Dec). Development of a classification system for periodontal diseases and conditions. Ann Periodontol, 4(1), 1-6.
Bower, R. C. (1979). Furcation morphology relative to periodontal treatment: Furcation entrance architecture. Journal of Periodontology,

50(1), 23-27.
Busslinger, A., Lampe, K., Beuchat, M., & Lehmann, B. (2001). A comparative in vitro study of a magnetostrictive and a piezoelectric ultrasonic scaling instrument. J Clin Periodontol, 28, 642-649.
Centers for Disease Control and Prevention. Guidelines for Infection Control in Dental Health-Care Settings – 2003. MMWR 2003; 52(No.

RR-17):[inclusive page numbers].

Daniel, S. J. & Harfst, S. A. (2002). Mosby’s dental hygiene concepts, cases, and competencies. St. Louis, Missouri: Mosby, Inc.
Darby, M. L. (2002). Mosby’s comprehensive review of dental hygiene (5th ed.). St. Louis, Missouri: Mosby, Inc.
Darby, M. (2003, February). Can we successfully maintain risk patients? International Journal of Dental Hygiene, 1(1), 9-15.
Drisko, C. L., Cochran, D. L., Blieden, T., Bouwsma, O. J., Cohen, R. E., Damoulis, P., Fine, J. B., Greenstein, G., Hinrichs, J., Somerman,

M. J., Iacono, V., Genco R. J. (2000, November). Research, Science and Therapy Committee of the American Academy of Periodontology. Position paper: Sonic and ultrasonic scalers in periodontics. Journal of Periodontology, 71(11), 1792-1801.

Drisko, C. L. (1993). Scaling and root planing without over instrumentation: hand versus power-driven scalers. Current Opinion in

Periodontology, 78-88.
Forrest, J. & Miller, J. (2004, Spring). The anatomy of evidence-based publications: article summaries and systematic reviews. Part 1.

Journal of Dental Hygiene, 78(2), 343-348.
Hoang, T., Jorgensen, M. G., Keim, R. G, Pattison, A. M., & Slots, J. (2003, June). Povidone-iodine as a periodontal pocket disinfectant. J

Periodontal Res, 38(3), 311-317.
Hodges, K. (1997). Concepts in nonsurgical periodontal therapy. Thomson Delmar Learning.
Khatiblou, F. & Ghodssi, A. (1983). Root surface smoothness or roughness in periodontal treatment. Journal of Periodontology, 54(6), 365-

Lea, S. C., Landini, G., & Walmsley, A. D. (2006). The effect of wear on ultrasonic scaler tip displacement amplitude. Journal of Clinical

Periodontology, 33, 37-41.
McInnes, C., Engel, D., & Martin, R. W. (1993, October). Fimbria damage and removal of adherent bacteria after exposure to acoustic

energy. Oral Microbiology and Immunology, 8, 277-282.

McInnes, C., Engel, D., Moncla, B. J., and Martin, R. W. (1992, June). Reduction in adherence of actinomyces viscosus after exposure to

low frequency acoustic energy. Oral Microbiology and Immunology, 7, 171-176.

Nield-Gehrig, J. S. (2004). Fundamentals of periodontal instrumentation & advanced root instrumentation (5th ed.). Philadelphia, PA:

Lippincott Williams & Wilkins.

Nosal, G., Scheidt, M. J., O’Neal, R., & Van Dyke, T. E. (1991, September). Penetration of lavage solution into the periodontal pocket

during ultrasonic instrumentation. Journal of Periodontology, 62, 554-557.

Parameter on comprehensive periodontal examination. (2000, May). Journal of Periodontology, 71(Suppl.), 847-848.
Parameter on periodontitis associated with systemic conditions. (2000, May). Journal of Periodontology, 71(Suppl.), 876-879.
Parini, M. R., Eggett, D. L., & Pitt, W. G. (2005, November). Removal of streptococcus mutans biofilm by bubbles. Journal of Clinical

Periodontology, 32(11), 1151-1156.
Parini, M. R. & Pitt, W. G. (2005, December). Removal of oral biofilms by bubbles: The effect of bubble impingement angle and sonic

waves. Journal of the American Dental Association, 136(12), 1688-1693.

Pitt, W. G. (2005, October). Removal of oral biofilm by sonic phenomena. American Journal of Dentistry,18(5), 345-352.
Position paper: Diagnosis of periodontal diseases. (2003, August). Journal of Periodontology, 74(8), 1237-1247.
Position paper: Guidelines for periodontal therapy. (2001, November). Journal of Periodontology , 72(11), 1624-1628.
Reynolds, MA, Lavigne, CK, Minah, GE, & Suzuki, JB. (1992, Sept). Clinical effects of simultaneous ultrasonic scaling and subgingival

irrigation with chlorhexidine. Mediating influence of periodontal probing depth. J Clin Periodontol, 19(8), 595-600.

Slots, J. & Jorgenson, M. (2002). Effective, safe, practical and affordable periodontal antimicrobial therapy: Where are we going, and are

we there yet? Periodontol 2000, 28, 298-312.

Wilkins, E. M. (2005). Clinical practice of the dental hygienist (9th ed.). Baltimore, MD: Lippincott Williams & Wilkins.

DENTSPLY Professional 1301 Smile Way York, PA 17404 800.989.8825

The database is protected by copyright © 2016
send message

    Main page