Arber, A., 1925. Moncotyledons, a Morphological Study. Cambridge, uk, Cambridge Univ. Press

Download 69.55 Kb.
Date conversion04.02.2017
Size69.55 Kb.
Anderson, Cajsa Lisa, Käre Bremer & Else Marie Friis, 2005. Dating phylogenetically basal Eudicots using rbcL sequences and multiple fossil reference points. Amer. J. Botan. 92: 1737-1748.

APG III (The Angiosperm Phylogeny Group, Birgitta Bremer et al.), 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botan. J. Linn. Soc. London 161: 105-121.

Arber, A., 1925. Moncotyledons, a Morphological Study. Cambridge, UK, Cambridge Univ. Press.
Avens, Nan Crystal, 2010. Damp, dark, disturbed, and destined for dominance. The ecology of early flowering plants. Amer. Paleontologist 17: 10-14.
Bailey, I. W., 1944. The development of vessels in angiosperms and its significance in morphological research. Amer. J. Bot. 31: 421-428.
Bakker, R. T., 1978. Dinosaur feeding behaviour and the origin of flowering plants. Nature 274: 661-663.
Barker, Michael S., & Paul G. Wolf, 2010. Unfurling fern biology in the genomics age. Bioscience 60: 177-185.
Beck, Charles B., 1976. Origin and early evolution of angiosperms: a perspective, pp. 1-10, in Charles B. Beck, ed. Origin and Early Evolution of Angiosperms, Columbia Univ. Press, New York.

Beck, Charles B., R. Schmid & G. W. Rothwell, 1982. Stelar morphology and the primary vascular system of seed plants. Bot. Rev. 48: 691-813, 913-931.

Benton, Michael J., 2010. The origins of modern biodiversity on land. Phil. Trans. Roy. Soc. B 365: 3667-3679.
Benzing, D. H., 1967. Developmental patterns in stem primary xylem of woody Ranales, II. Species with trilacunar and multilacunar nodes. Amer. J. Bot. 54: 813-820.
Bessey, C. E., 1897. Phylogeny and taxonomy of the angiosperms. Bot. Gaz. 24: 145-178.
Bessey, C. E., 1915. The phylogenetic taxonomy of flowering plants. Ann. Missouri Bot Gard. 2: 109-164.
Bezannilla, Magdalena, Amy C. Horton, C. Sevener & Ralph S. Quatrano, 2003. Phylogenetic analysis of new plant myosin sequences. J. Molec. Evol. 57: 229-239.
Bharathan, Geeta, 1996. Does the monocot mode of leaf development characterize all monocots? Aliso 14: 271-279.
Bloedel, C. A., & A. M. Hirsch, 1979. Developmental studies of the leaves of Sagittaria latifolia and their relationship to the leaf base theory of monocotyledonous leaf morphology. Canad. J. Bot. 57: 420-434.

Boyce, C. Kevin, Tim J. Brodribb, Taylor S. Feild, & Maciej A. Zwieniecki. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings Royal Soc. London B: 276: 1771-1776.

Boyce, C. Kevin, & Jung-Eun Lee, 2010. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proc. R. Soc. B 277: 3437-3443.
Brasier, M. D., 1975. An outline history of sea grass communities. Paleontology 18: 681-702.
Bray, P. Sargent, & Ken B. Anderson, 2009. Identification of Carboniferous (320 million years old) Class 1c amber. Science 326: 132-134.
Bremer, Kåre, & Thomas Janssen, 2006. Gondwanan origin of major monocot groups inferred from dispersal-vicariance analysis. Aliso 22: 22-27.
Bryant, D., & V. Moulton, 2004. Neighbor-Net: and agglomerative method for the construction of phylogenetic networks. Molec. Biol. Evol. 21: 255-265.
Burger, William, 1977. The Piperales and the Monocots: alternate hypotheses for the origin of monocotyledonous flowers. Bot. Rev. 43: 345-393.

Burger, William, 1981. Heresy revived: The Monocot theory of angiosperm origin. Evol. Theory 5: 189-225.

Burger, William, 1998. The question of cotyledon homology in Angiosperms. Bot. Rev. 64: 356-371.
Burger, William, 2006. Flowers: How They Changed the World. Prometheus Books, Amherst, NY.
Burleigh, J. Gordon, & Sarah Mathews, 2004. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. Amer. J. Bot. 91: 1599-1613.
Buzgo, Matyas, & Peter K. Endress, 2000. Floral structure and development of Acoraceae and its systematic relationships with basal angiopserms. Int. J. Plt. Sci. 161: 23-41.
Campbell, Douglas Houghton, 1911. Plant Life and Evolution, p.162. Henry Holt & Co., New York.
Campbell, Douglas H., 1930. The phylogeny of monocotyledons. Ann. Bot. 44: 311-331.
Cantino, Philip D., James A. Doyle, Sean W. Graham, Walter S. Judd, Richard G. Olmstead, Douglas E. Soltis, Pamela S. Soltis & Michael J. Donoghue, 2007. Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56: 822-846.

Carlquist, Sherwin, 1975. Ecological Strategies of Xylem Evolution. Berkeley, CA, Univ. California Press.

Carlquist. Sherwin, 1987. Presence of vessels in wood of Sarcandra (Chloranthaceae): comments on vessel origins in angiosperms. Amer. J. Bot. 74: 1765-1771.
Carlquist, Sherwin, 1996. Wood anatomy of primitive angiosperms: new perspectives and syntheses, pp. 68-90 in D. W. Taylor & L. J. Hickey, eds. Flowering Plant Origin, Evolution and Phylogeny. New York, Chapman & Hall.
Carlquist, Sherwin, 2009. Xylem heterochrony: an unappreciated key to angiosperm origin and diversification. Bot. J. Linn. Soc. 161: 26-65.

Charlton, W. A., 1981. Features of the inflorescence of Triglochin maritima. Canad. J. Bot. 59: 2108-2115.

Chase, Mark W., 2004. Monocot relationships: an overview. Amer. J. Bot. 91: 1645-1655.

Chase, Mark W., Michael F. Fay, Dion S. Devey, Olivier Maurin, Nina R[o]nstedt, T. Jonathan Davies, Yohan Pillon, Gitte Petersen, Ole Seberg, Minoru N. Tamura, Conny B. Asmussen, Khidir Hilu, Tohmas Borsch, Jerrold I. Davis, Dennis W. Stevenson, J. Chris Pires, Thomas J. Givnish, Kenneth J. Systsma, Marc A. McPherson, Sean W. Graham, & Hardeep S. Rai, 2006. Multigene analyses of monocot relationships: a summary. Aliso 22: 63-75.

Chaw, Shu-Miaw, Chien-Chang, Hsin-Liang Chen & Wen-Hsiung Li, 2004. Dating the monocot-dicot divergence and the origin of core Eudicots. J. Molec. Evol. 58: 424-441.
Cheadle, V. I., 1953. Independent origin of vessels in monocots and dicots. Phytomorph. 3: 23-44.
Chung, Ching-Chun, Hsien-Chia Lin, I-Pin Lin, Teh-Yuan Chow, Hong-Hwa Chen, Wen-Huei Chen, Chia-Hsiung Cheng, Chung-Yen Lin, Shu-Mei Liu, Chien-Chang Chang & Shu-Miaw Chaw, 2006. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): Comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Molec. Biol. Evol. 23: 279-291.
Cornet, Bruce, 1989. The reproductive morphology and biology of Sanmiguelia lewisii, and its bearing on angiosperm evolution in the Late Triassic. Evolutionary Trends in Plants 3: 25-51.
Coulter, J. M. , & C. J. Chamberlain, 1903. Morphology of Angiosperms. New York, Appleton.

Coulter, J. M., & W. J. G. Land, 1914. The origin of monocotyledony. Bot. Gaz. 57: 509-515.

Crane, Peter R., 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Missouri Bot. Gard. 72: 716-793.
Cronquist, Arthur, 1968. The Evolution and Classification of Flowering Plants. Boston, Houghton Mifflin Co.
Cronquist, Arthur, 1981. An Integrated System of Classification of Flowering Plants. New York, Columbia University Press.
Czaja, A. T., 1978. Structure of starch grains and classification of vascular plant families. Taxon 27: 463-470.
Dahlgren, Rolf M. T., & M. Trevor Clifford, 1982. The Monocotyldeons: A Comparative Study. London, Academic Press.
Dahlgren, R., & F. N. Rasmussen, 1983. Monocotyledon evolution, character and phylogeetic estimation. pp. 255-395 in K. Hecht, B. Wallace, & G. T. Prance, eds. Evol. Biol. 16. New York, Plenum.

Davis, Jerrold I., Dennis W. Stevenson, Gitte Peterson, Ole Seberg, Lisa M. Campbell, John V. Freudenstein, Douglas H. Goldman, Christopher R. Hardy, Fabian A. Michelangeli, Mark P' Simmons, Chelsea D. Specht, Francisco Vergara-Silva & María Gandolfo, 2004. A phylogeny of the Monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating Jacknife and Bootstrap values. System. Bot. 29: 467-510.

Devadas, C. & C. B. Beck, 1972. Comparative morphology of the primary vascular systems in some species of Rosacae and Leguminosae. Amer. J. Bot. 59: 557-567.
Donoghue, Michael J., & Sarah Mathews, 1998. Duplicate genes and the root of angiosperms, with an example using phytochrome sequences. Molec. Phyl. Evol. 9: 489-500.
Doyle, J. A., & L. J. Hickey, 1976. Pollen and leaves from the mid-Cretaceous Potomac group and their bearing on early angiosperm evolution. In C. B. Beck, ed., Origin and Early Evolution of Angiosperms. New York, Columbia Univ. Press, 139-206.
Doyle, James A., 2008. Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Int. J. Plant Sci. 169: 816-843.
Doyle, James A., & Michael J. Donoghue, 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot. Rev. 52: 321-431.

Doyle, James A., & Peter K. Endress, 2010. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. J. Syst. Evol. 48: 1-35.

Drouin, Guy, Hanane Daoud, & Junnan Xia, 2008. Relative rates of synonymous substitutions in the mitochondrial, chlororplast and nuclear genomes of seed plants. Mol. Phylog. Evol 49: 827-831.
Duvall, M. R., G. H. Learn, L. E. Eguiarte & M. T. Clegg, 1993. Phylogenetic analysis of rbcL sequences identifies Acorus calamus as the primal extant monocotyledon. Proc. Natl. Acad. Sci. USA 90: 4641-4644.
Duvall, Melvin R., & Autumn Bricker Ervin, 2004. 18S gene trees are positively misleading for monocot/dicot phylogenetics. Mol. Phyl, Evol. 30: 97-106.
Eames, A. J., 1911. On the origin of the herbaceous type in the angiosperms. Ann. Bot. 25: 215-224.
Eames, A. J., 1961. Morphology of the Angiosperms. New York, McGraw-Hill..
Ehrendorfer, F., 1976. Evolutionary significance of chromosomal differentiation patterns in Gymnosperms and primitive Angiosperms. pp. 220-240 in C. B. Beck, ed. Origin and Early Evolution of Angiosperms. New York, Columbia Univ. Press.

Endress, Peter K., & James A. Doyle, 2009. Reconstructing the ancestral Angiosperm flower and its initial specializations. Amer. J. Bot. 96: 22-66.

Engler, A. & H. Prantl, 1897-1915. Die natürlichen Pflanzenfamilien, 1-20. Leipzig.
Esau, Kathryn, 1977. Anatomy of Seed Plants. 2nd. ed. New York, John Wiley.
Esenbeck, Ernst, 1914. Beiträge zur Biologie der Gattungen Potamogeton und Scirpus. Flora 107: 151-212.
Evert, Ray F., 2006. Esau's Plant Anatomy, 3rd. ed, Hoboken, NJ. Wiley Interscience.
Fahn, A., 1959. Metaxylem elements in some families of the monocotyledons. New Phytol. 53: 530-540.
Feild, Taylor S., Nan Crystal Arens, James A. Doyle, Todd E. Dawson & Michael J. Donoghue, 2004. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30: 82-107.
FIPCGGC, 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463-467.

Floyd, Sandra K., Christopher S. Zalewski & John L. Bowman, 2006. Evolution of class III homeodomain-leucine zipper genes in Streptophytes. Genetics 175: 373-388.

Floyd, Sandra K., & John L. Bowman, 2010. Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology? J. Plant Res. 123: 43-55.
Friedman, William E., 1992. Double fertilization of nonflowering seed plants and its relevance to the origin of flowering plants. Int. J. Cytology 140: 319-355.
Friedman, William E., 2008. Hydatellaceae are water lilies with gymnospermous tendencies. Nature 453: 94-97.
Friedman, William E., 2009. The meaning of Darwin's "abominable mystery." Amer. J. Bot. 96: 5-21.
Friis, Else Marie, James A. Doyle, Peter K. Endress & Qin Leng, 2003. Archaefructus -- angiosperm precursor or specialized early angiosperm? Trends in Plant Sci. 8: 369-373.
Friis, Else Marie & Peter Crane, 2007. New home for tiny aquatics. Nature 446: 269-270.
Friis, Else Marie, K. Raunsgaard Pedersen & P. R. Crane, 2006. Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Paleogeogr. P & P. 232: 251-293.

Friis, Else Marie, K. Raunsgaard Pedersen & Peter R. Crane, 2010. Diversity in obscurity: fossil flowers and the early history of angiosperms. Phil. Trans. Roy. Soc. B 365: 369-382.

Frolich, Michael W., & David S. Parker, 2000. The mostly male theory of flower evolutionary origins: from genes to fossils. Syst. Bot. 25: 155-170.
Frolich, Michael W., & Mark W. Chase, 2007. After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450: 1184-1189.
Gandolfo, María A., Kevin C. Nixon & William L. Crepet, 2002. Triuridaceae fossil flowers from the Upper Cretaceous of New Jersey. Aner. J. Bot. 89: 1940-1957.
Givnish, Thomas J., J. Chris Pires, Sean W. Graham, Marc A. McPherson, Linda M. Prince, Thomas B. Patterson, Hardeep S. Rai, Eric H. Roalson, Timothy M. Evans, William J. Hahn, Kendra C. Millam, Alan W. Meerow, Mia Molvray, Paul J Kores, Heath E. O'Brien, Jocelyn C. Hall, W. John Kress & Kenneth J. Sytsma, 2006. Phylogenetic relationships of monocots based on the highly informative plastid gene ndhF: evidence for widespread concerted convergence. Aliso 22: 28-51.

Givnish, Thomas J., Mercedes Ames, Joel R. McNeal, Micheael R. McKain, P. Roxanne Steele, Claude W. dePamphilis, Sean W. Graham, J. Chris Pires, Dennis W. Stevenson, Wendy B. Zomlefer, Barbara G. Briggs, Melvin R. Duvall, Michael J. Moore, J. Michael Heaney, Douglas E. Soltis, Pamela S. Soltis, Kevin Thiele & James. H. Leebens-Mack, 2010. Assembling the tree of the monocotyledons: plastome sequence phylogeny and evolution of Poales. Ann. Missouri Bot. Gard. 97: 584-616.

Gonzalez, Favio, & Marìa Angèlica Bello, 2009. Intra-individual variation in flowers in Gunnera subgenus Panke (Gunneraceae) and proposed apomorphies for Gunnerales. Bot. J. Linn. Soc. 160: 262-283.
Goremykin, Vadim V., Sabine Hansmann & William F. Martin, 1997. Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: revised molecular estimates of two seed plant divergence times. Plant Syst. Evol. 206: 337-351.
Goremykin, Vadim V., K. I. Hirsch-Ernst, S. Wölfl & F. H. Hellwig, 2003a. The chloroplast gnenome of the "basal" angiosperm Calycanthus fertilis --structural and phylogenetic analyses. Plt. Syst. Evol. 242: 119-135.
Goremykin, Vadim V., K. I. Hirsch-Ernst, S. Wölfl & F. H. Hellwig, 2003b. Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Molec. Biol. Evol. 20: 1499-1505.

Goremykin, Vadim V., Karen I. Hirsch-Ernst, Stefan Wölfl & Frank H. Hellwig, 2004. The chloroplast genome of Nymphaea alba: whole-genome analysis and the problem of identifying the most basal Angiosperm. Molec. Biol. Evol. 21: 1445-1453.

Goremykin, Vadim V., Barbara Holland, Karen I. Hirsch-Ernst & Frank Hellwig, 2005. Analysis of Acorus calamus chloroplast genmome and its phylogenetic implications. Molec. Biol. Evol. 22: 1813-1822.
Gottwald, H., 1977. The anatomy of secondary xylem and the classification of ancient dicotyledons. Plant Syst. Evol. Suppl. 1: 111-121.
Graham, Sean W., Jesse M. Zourski, Marc A. McPherson, Donna M, Cherniawsky, Jeffery M. Saarela, Elvira F. C. Horne, Selena Y. Smith, Winson A. Wong, Heath E. O'Brien, Vincent L. Biron, J. Chirs Pires, Richard G. Olmstead, Mark W. Chase & Hardeep S. Rai, 2006. Robust inference of Monocot deep phylogeny using an expanded mutligene plastid data set. Aliso 22: 3-21.
Graham, Sean W., & William J. D. Iles, 2009. Different gymnosperm outgroups have (mostly) congruent signal regarding the root of flowering plant phylogeny. Amer. J. Bot. 96: 216-227.
Guignard, J. L., 1983. The development of cotyledon and shoot apex in Monocotyledons. Canad. J. Bot. 62: 1316-1318.

Haccius, B., & K. K. Lakshmanan, 1967. Experimental studies on monocotyledonous dicotyledons: Phenylboric acid-induced "dicotyledonous" embryos in Cyclamen persicum. Phytomorph. 17: 488-494.

Hagemann, W., 1970. Studien zur Entwicklungsgeschichte der Angiospermenblätter. Bot. Jahrb. Syst. 90: 297-413.
Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Hallier, H., 1903. Vorläufiger Entwurf des natürlichen (phylogentischen) Systems der Blütenpflanzen. Bull. de l'herbier Boissier, 2 ser. 3: 306-317.
Hallier, H., 1905 Provisional scheme of the natural (phylogenetic) systems of flowering plants. New Phytol. 4: 151-162.
Hallier, H., 1912. L'origne et la systëme phylëtique des Ansgiosperms exposë ä l'aide de leur arbre gënëalogique. Archs. Ne"erl. Sci. sër 2, 1: 146-234.
Hamann, U., 1976. Hydatellaceae--a new family of Monocotyledonae. New Zealand J. Bot. 14: 193-196.

Heinrich, Ingo, & Holger Gärtner, 2008. Variations in tension wood of two broad-leaved tree species in response to different mechanical treatments: implications for dendrochronology and mass movement studies. Int. J. Plant Sci. 169: 928-936.

Henslow, G., 1911. The origin of monocotyledons from dicotyledons through self-adaptation in a moist or aquatic habit. Ann. Bot. 25: 714-744.

Herendeen, Patrick S., & Peter R. Crane, 1995, The fossil history of the monocotyledons, pp. 1-21, in P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries, Monocotyledons: Systematics and Evolution. Royal Botanic Gardens, Kew.

Hickey, Leo J., & David Winship Taylor, 1996. Origin of the angiosperm flower, pp. 176-231 in David W. Taylor & Leo J. Hickey, Flowering Plant Origin, Evolution and Phylogeny. Chapman & Hall, NY.
Hill, C. R., & P. R. Crane 1982. Evolutionary cladistics and the origin of Angiosperms. pp. 269-361 in K. A. Joysey & A. E. Friday, eds. Problems of Phylogeny Reconstruction, System. Assoc. Spec. Vol. 21.

Hilton, Jason, & Richard M. Bateman, 2006. Pteridosperms are the backbone of seed-plant phylogeny. J. Torrey Bot. Soc. 133: 119-168.

Hilu, Khidir W., et al., 2003. Angiosperm phylogeny based on matK sequence information. Amer. J. Bot. 90: 1758-1776.

Hochuli, Peter A., & Susanne Feist Burkhardt, 2004. A boreal early cradle of Angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway). J. Micropal. 23: 97-104.

Howard, R. A., 1974. The stem-node-leaf continuum of the Dicotlyedons. J. Arnold Arbor. 55: 126-181.
Huson, D. H., & D. Bryant, 2006. Application of phylogenetic networks in evolutionary studies. Molec. Biol. Evol. 23: 254-267.
Hutchinson, John, 1959. The Families of Flowering Plants, 2nd ed., vol. 2. Oxford, Clarendon Press.
Isebrands, J. G., & P. R. Larson, 1980. Ontogeny of major veins in the lamina of Populus deltoides Bartr. Amer. J. Bot. 67: 23-33.

Jacques-Felix, H., 1988. Les Liliopsida (ex Monocotylédones) n'ont pas de cotylédon. II. La préfeuille de la plantule: ses rapports avec celles des axes feuillés. Bull. Mus. Natl. Hist. Nat. Sect B: Adansonia 10: 275-333.

Janzen, Thomas, & Kare Bremer, 2004. The age of major monocot groups inferred from 800+ rbcL sequences. Bot. J. Linn. Soc. 146: 385-398. considerable early Cretac! PLT-PHYL
Jeffrey, E. C., 1917. Anatomy of Woody Plants. Univ. of Chicago Press, Chicago.
Johansen, Bo, Signe Frederiksen, & Martin Skipper, 2006. Molecular basis of development in peraloid monocot flowers. Aliso 22: 151-158.
Kato, M., 1990. Ophioglossaceae: a hypothetical archetype for the carpel. Bot. J. Linn. Soc. 102: 303-311.
Keating, Richard C., 2002. Acoraceae and Araceae, in M. Gregory & D. F. Cutler, eds. Anatomy of the Monocotyledons vol. IX, 1-327. Oxford, Oxford Univ. Press.
Kejnovsky, Eduard, Ilia J. Leitch, & Andrew R. Leitch, 2009. Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol. Evol. 24: 572-582.
Kidner, Catherine A., et al., 2002. Developmental genetics of the angiosperm leaf. Adv. Bot. Res. 38: 192-234.

Kim, Sangtae, D. E. Soltis, P. S. Soltis, M. J. Zanis, & S. Younghae, 2004a. Phylogenetic relationships among early-diverging eudicots based on four genes: were the eudicots ancestrally woody? Molec. Phylog. Evol. 31: 16-30.

Kim Sangtae, Mi-Jeong Yoo, Victor A. Albert, James S. Farris, Pamela S. Soltis & Douglas E. Soltis, 2004b. Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Amer. J. Bot. 91: 2102-2118.
Kuhn, Thomas, 1970. The Structure of Scientific Revolutions. 2nd, ed. International Encyclopedia of Unified Science. Vol. 2, no. 2. Chicago, University of Chicago Press.
Larson, P. R., 1976. Procambium vs. cambium and protoxylem vs. metaxylem in Populus deltoides seedlings. Amer. J. Bot. 63: 1332-1348.
Leigh Jr., E. G., 2010. The evolution of mutualism. J. Evol. Biol. 23: 2507-2528.
Leitch, A. R., & S. J. Leitch, 2008. Genomic plasticity and the diversity of polyploid plants. Science 320: 481-483.

Les, Donald H., & Edward L. Schneider, 1995. The Nymphaeales, Alismatidae, and the theory of aquatic monocotyledon origin, pp. 23-42, in P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries, Monocotyledons: Systematics and Evolution. Royal Botanic Gardens, Kew.

Lieu, S. M., 1979. Organogenesis in Triglochin striata. Canad. J. Bot. 57: 1418-1438.
Liu, Cuijing, Jian Zhang, Ning Zhang, Hongyan Shan, Kunmei Su, Jisi Zhang, Zheng Meng, Hongzhi Kong & Zhiduan Chen, 2010. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development. Mol. Biol. Evol. 27: 1598-1611.
Liu, K., S. Raghavan, S. Nelesen, C. R. Linder, & T. Warnow, 2009. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 324: 1561-1564.
Loconte, Henry, 1996. Comparison of alternative hypotheses for the origin of angiosperms, pp. 267-285, in David W. Taylor & Leo J. Hickey, Flowering Plant Origin, Evolution and Phylogeny. Chapman & Hall, NY.
Loconte, Henry, & Dennis W. Stevenson, 1990. Cladistics of the Spermatophyta. Brittonia 42: 197-211.
Metcalf, C. R., & L. Chalk, 1950. Anatomy of the Dicotyledons. Oxford Univ. Press, London.

Majumdar, G. P., 1956. Stipules, stipels, ligules and leaf sheath. Proc. Natl. Inst. Sci. India sect B. 43: 9-22.

Majumdar, G. P. & P. Pal, 1961. Developmental studies VI. The morphology of the so-called stipules of Piper (Piperaceae) from a comparative ontological study of this structure in Piper betel, P. longum, P. nigrum, P. ornatum and two other species of Piper and the morphology of the leaf-sheath of Scindapsus officinalis (Araceae). Proc. Natl. Inst. Sci. India B; Biol. 27: 29-39.
Mardanov, Andrey V., Nikolai V. Ravin, Boris B. Kuznetsov, Tabir H. Samigullin, Andrey S. Antonov, Tatiana V. Kolganova & Konastantin G. Skyabin, 2008. Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms. J. Molec. Evol. 66: 555-564.
Martin, William, Alfons Gieri & Hein Saedler, 1989. Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46-48.
Martin, William, Derek Lydiate, Henner Brinkmann, Gert Forkmann, Heinz Saedler & Rüdiger Cerff, 1993. Molecular phylogenies in angiosperm evolution. Mol. Biol. Evol. 10: 140-162.
Melchior, Hans, 1964. A. Engler's Syllabus der Pfanzenfamilien, 12th ed., vol. 2. Gebrüder Borntraeger, Berlin.

Mesler, M. R., R. D. Thomas & J. G. Bruce, 1975. Mature gametophyte and young sporophyte of Ophioglossum nudicaule. Phytomorph. 25: 156-166.

Miadlikowska, Jolana, et al., 2006. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three RNA- and two protein-coding genes. Mycologia 98: 1088-1103.
Nardmann, Judith, Pascal Reisewitz & Wolfgang Werr, 2009. Descrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation in angiosperms. Mol. Biol. Evol. 26: 1745-1755.
Nast, C. G., 1944. The comparative morphology of the Winteraceae. VI. Vascular anatomy of the flowering shoot. J. Arnold Arbor. 25: 454-466.
Niklas, Karl J., 1997. The Evolutionary Biology of Plants. Univ. of Chicago Press, Chicago.
Nixon, K. C., William L. Crepet, Dennis Stevenson, & Else Marie Friis, 1994. A re-evaluation of seed plant phylogeny. Ann. Missouri Bot. Gard. 81: 484-553.

Norstog, Knut J., Ernst M. Gifford, & Dennis Wm. Stevenson, 2004. Comparative development of the Spermatozoids of Cycads and Ginkgo biloba. Bot. Rev. 70: 1-15.

Novacek, Michael, 2007. Terra: Our 100-million-year-old Ecosystem--and the Threats that put it at Risk. Farrar, Strauss, Giroux, New York.
Palser, B. F., 1975. The bases of angiosperm phylogeny: embryology. Ann. Missouri Bot. Gard. 62: 621-646.
Philippe, Marc, Bernard Gomez, Vincent Girard, Clément Coiffard, Véronique Daviero-Gomez, Frédéric Thevenard, Jean-Paul Billon-Bruyat, Myette Guiomar, Jean-Louis Latil, Jean Leloeuff, Didier Néraudeau, Davide Olivero & Jan Schlög, 2008. Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood of Europe. Palaeoworld 17: 142-152.
Philipson, W. R., & E. E. Balfour, 1963. Vascular patterns in dicotyledons. Bot. Rev. 29: 382-404.
Phillips, Matthew J., Thomas H. Bennett & Michael S. Y. Lee, 2009. Molecules, morphology, and ecology indicate a recent amphibious ancestry for echidnas. Proc. Natl. Acad. Sci. USA 106: 17089-17094.

Poinar, Jr., George O., 2004. Programinis burmitis gen. et sp. nov., and P. laminatus sp. nov., Early Cretaceous grass-like monocots from Burmese amber. Australian Systematic Botany 17: 497-504.

Prasad, Vandana, Caroline A. E. Strönberg, Habib Alimohammadian & Ashok Sahni, 2005. Dinosaur coprolites and the early evolution of grasses and grazers. Science 310: 1177-1180.
Qiu, Yin-Long, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White, 2006. Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes. Taxon 55: 837-856.
Raju, M. V. S., & E. M. V. Nambudiri, 1995. The embryo of the eusporangiate vascular plants and the probable antiquity of monocotyledonous embryo. Phytomorph. 45: 191-206.
Remizowa, Magarita V., Dimitry D. Sokoloff & P. J. Rudall, 2010. Evolutionary history of the monocot flower. Ann. Missouri Bot. Gard. 97: 617-645.
Richards, J. 1983. Heteroblastic development in the water hyacinth (Eichornia crassipes). Bot. Gaz. 144: 247-259.
Richards, Jennifer, Jeremy J. Bruhl & Karen L. Wilson, 2006. Flower or spikelet? Understanding the morphology and development of reproductive structures in Exocarya (Cyperaceae, Mapanioideae, Chrysitricheae). Amer. J. Bot. 93: 1241-1250.

Ronald, Pamela C., & Bruce Beutler, 2010. Plant and animal sensors of conserved microbial signatures. Science 330: 1061-1062.

Rothwell, G. W., & R. Serbert, 1994. Lignophyte phylogeny and the evolution of spermatophytes: a numerical cladistic analysis. Syst. Bot. 19: 443-482.
Rudall, Paula J. & Matyas Buzgo, 2002. Evolutionary history of the monocot leaf. pp. 431-458 in Q. C. B. Cronk, R. M. Bateman, & J. A. Hawkins, eds. Developmental Genetics and Evolution. Taylor & Francis, London.
Rudall, Paula J., Dimitry D. Sokoloff, Margarita V. Remizowa, John G. Conran, Jerrold I. Davis, Terry D. Macfarlane & Dennis W. Stevenson, 2007. Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage. Amer. J. Bot. 94: 1073-1092.
Rudall, Paula J., et al., 2009a. Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower. Amer. J. Bot. 96: 67-82.

Rudall, Paula J., Tilly Eldridge, Julia Tratt, Margaret M. Ramsay, Renee E. Tuckett, Selena Y. Smith, Margaret E. Collinson, Margarita V. Remizowa & Dimitry D. Sokoloff, 2009b. Seed fertilization, development, and germination in Hydatellaceae (Nymphaeales): implications for endosperm evolution in early angisoperms. Amer. J. Bot. 96: 1591-1593.

Saarela, J. M., H. S. Rai, J. A. Doyle, P. K. Endress, S. Matthews, A. D. Marchant, B. G. Briggs, & S. W. Grand, 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446: 312-315.
Sanderson, Michael J., & Michael J. Donoghue, 1994. Shifts in diversification rates with the origin of angiosperms. Science 264: 1590-1593.
Sargant, E., 1903. A theory on the origin of monocotyledons, founded on the structure of their seedlings. Ann. Bot. 17: 1-92.
Savard, Louise, Peng Li, Steven H. Strauss, Mark W. Chase, Martin Michaud & Jean Bousquet, 1994. Chloroplast and nuclear gene sequences indicate Late Pennsylvanian time for the last common ancestor of extant seed plants. Proc. Natl. Acad. Scie. USA 91: 5163-5167.
Schneider, E. L., & S. Carlquist, 1996. Vessel origin in Cabomba. Nordic J. Bot. 637-642.
Sinnott, E. W., 1916. A botanical criterion of the antiquity of the angiosperms. J. Geol. 24: 777-782.

Sinnott, Edmund W. & Irving W. Bailey, 1914a. Investigations on the phylogeny of the angiopsperms, 3. Nodal anatomy and the morphology of stipules. Amer. J. Bot. 1: 441-453.

Sinnott, Edmund W., & Irving W. Bailey, 1914b. Investigations on the phylogeny of angiosperms: No. 4. The origin and dispersal of herbaceous angiosperms. Ann. Bot. 28: 547-600.
Slade, Brenda, 1971. Stelar evolution in vascular plants. New Phytol. 70: 879-884.
Solms-Laubach, H., 1978. Ueber monocotyle Embryonen mit schietelbürtigen Vegetationspunkt. Bot. Zeit. 36: 65-74, 81-94.
Soltis, Douglas E., & Pamela S. Soltis, 2004. Amborella not a "Basal Angiosperm?" Not so fast. Amer. J. Bot. 91: 997-1001.
Soltis, Douglas E., Michael J. Moore, J. Gordon Burleigh, Charles D. Bell & Pamela S. Soltis, 2010. Assembling the angiosperm tree of life: progress and future prospects. Ann. Missouri Bot. Gard. 97: 514-526.
Soltis, Pamela S., & Douglas E. Soltis, 2004. The origin and diversification of Angiosperms. Amer. J. Bot. 91: 1614-1626.

Soltis, Pamela S., Samuel F. Brockington, Mi-Jeong Yoo, Ana Piedrahita, Maribeth Latvis, Michael J. Moore, Andre S. Chanderbali & Douglas E. Soltis, 2009. Floral variation and floral genetics in basal angiosperms. Amer. J. Bot. 96: 110-128.

Specht, Chelsea D., & Madelaine E. Bartlett, 2009. Flower evolution: the origin and subsequent diversification of the angiosperm flower. Ann. Rev. Ecol, Evol, Syst. 40: 217-243.
Stebbins, G. Ledyard, 1965. The probable growth habit of the earliest flowering plants. Ann. Missouri Bot. Gard. 52: 457-468.
Stebbins, G. Ledyard, 1974. Flowering Plants: Evolution Above the Species Level. Belknap Press, Cambridge, MA.
Stuessy, Tod F., 2004. A transitional-combinational theory for the origin of angiosperms. Taxon 53: 3-16.
Stuessy, Tod F., 2010. Paraphyly and the origin and classification of angiosperms. Taxon 59: 689-693.
Sun, Ge, Quiang Ji, David L. Dilcher, Shaolin Zheng, Kevin C. Nixon, & Xinfu Wang 2002. Archaefructaceae: a new basal angiosperm family. Science 296: 899-904.
Swofford, D. L., 1993. PAUP - a computer program for phylogenetic inference using maximum parsimony. J. General Physiology 102: A9.

Takhtajan, Armen, 1959. Die Evolution der Angiospermen. Jena.

Takhtajan, Armen, 1969. Flowering Plants: Origin and Dispersal. Oliver & Boyd, Edinbugh.
Takhtajan, Armen, 1976. Neoteny and the origin of flowering plants. pp. 207-219 in C. B. Beck, ed. Origin and Early Evolution of Angiosperms. Columbia Univ. Press, New York.
Takhtajan, Armen, 1991. Evolutionary Trends in Flowering Plants. Columbia University Press, New York.
Taylor, David Winship, & Leo J. Hickey, 1990. An Aptian plant with attached leaves and flowers: implications for angiosperm origin. Science 247: 702-704.

Taylor, David Winship, & Leo J. Hickey, 1992. Phylogenetic evidence for the berbaceous origin of angiosperms. Plant Syst. Evol. 180: 137-156.

Taylor, David Winship, & Leo J. Hickey, 1996. Evidence for and implications of an herbaceous origin for angiosperms, p. 232-266 in David W. Taylor & Leo J. Hickey, Flowering Plant Origin, Evolution and Phylogeny. Chapman & Hall, New York.

Taylor, Edith L., & Thomas N. Taylor, 2009. Seed ferns from the late Paleozoic and Mesozoic: any angiosperm ancestors lurking here? Amer. J. Bot. 96: 237-251.

Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL-W-improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.
Tillich, Hans-Jürgen, 1992. Bauprinzipien und Evolutionlinien bei monocotylen Keimpflanzen. Bot. Jahrb. Syst. 114: 91-132.
Tillich, Hans-Jürgen, Renee Tuckett, & Eva Facher, 2007. Do Hydatellaceae belong to the monocots or basal angiosperms? Evidence from seedling morphology. Willdenowia 37: 399-406.
Tilton, B. R., & B. F. Palser, 1976. Primary xylem maturation in conifer seedlings. Bot. Gaz. 137: 165-178.
Tobe, Hiroshi, & Hiroshi Takahashi, 2009. Embryology of Petrosavia (Petrosaviaceae, Petrosaviales): evidence for the distinctness of the family from other monocots. J. Plant Res. 122: 597-610.
Tomlinson, P. B., 1970. Monocotyledons, towards an understanding of their morphology and anatomy. Advan. Bot. Res. 3: 207-292.

Tomlinson, P. B., 1995. Non-homology of vascular organization in monocotyledons and dicotyledons. pp. 589-622 in P.J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries, eds. Monocotyledons: Systematics and Evolution. Royal Botanic Garden Kew.

Troitsky, A. V., Yu.F. Melekhovets, G. M. Rakhimova, V. K. Bobrova, K. M. Valiejo-Roman & A. S. Antonov, 1991. Angiosperm origin amd early stages of seed plant evolution deduced from rRNA sequence comparisons. J. Molec. Evol. 32: 253-261.
Valla, J. J. & M. E. Martin, 1976. La semilla y la plantule de la irupè (Victoria cruziana D'Orb.). Darwiniana 20: 391-407.
Vallade, Jean, F. Bugnon & Z. Ibannian, 1993. Interprétation morphologique de l'embryon chez Embryophytes, avec application au cas des Graminées. Canad. J. Bot. 71: 256-272.
Vermeij, Geerat J., 1987. Evolution and Escalation: An Ecological History of Life. Princeton Univ. Press, Princeton, NJ.
Wang, Daryi, Yu-Wei Wu, Arthur Chun-Chieh Shih, Chung-Shien Wu, Ya-Nan Wang & Shu-Miaw Chaw, 2007. Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 MYA. Mol. Biol. Evol. 24: 2040-2048.
Wang, Henchang, et al., 2009. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc. Natl. Acad. Sci. USA 106: 3853-3858.

Weng, Jing-Ke, Xu Li, Jake Stout & Clint Chapple, 2008. Independent origin of syringyl lignin in vascular plants. Proc. Natl. Acad. Sci. USA 105: 7887-7892.

Williams, Joseph H., 2008. Novelties of the flowering plant pollen tube underlie diversification of a key life history stage. Proc. Natl. Acad Sci. USA 105: 11259-11263.
Wilson, Jonathan P., & Andrew H. Knoll, 2010. A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiol. 36: 335-355.
Wu, Chung-Shien, Ya-Nan Wang, Shu-Mei Liu & Shu-Miaw Chaw, 2007. Chloroplast genome (cpDNA) of Cycas taitungensis) and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. Mol. Biol. Evol. 24: 1366-1379.
van Heel, W. A., 1983. The ascidiform early development of free carpels. Blumea 28: 231-270.
Zavada, M. S., 2007. The identification of fossil angiosperm pollen and its bearing on the time and place of the origin of angiosperms. Plt. Syst. Evolut. 263: 117-134.
Zimmerman, M. H., & P. B. Tomlinson, 1972. The vascular system of monocotyledonous stems. Bot. Gaz. 133: 141-155.

The database is protected by copyright © 2016
send message

    Main page