Appendix 2-5: Rejected ecotox bibliography for Chlorpyrifos



Download 6.25 Mb.
Page78/151
Date conversion04.02.2017
Size6.25 Mb.
1   ...   74   75   76   77   78   79   80   81   ...   151
rat neuronal PC12 cells were exposed to CPF concentrations of 0 to 5000 is a subset of g/mL in Krebs buffered media (KRH), KRH + 4% bovine serum albumin (BSA), and KRH + 25 is a subset of M of the antioxidant Trolox for 0 to 5 h. Paraquat served as a positive control for ROS. The fluorescent probe 2,7-dichlorodihydro-fluorescein and the MTS assay were used to measure ROS and cytotoxicity, respectively. Examinations into CPF-albumin binding were also conducted. CPF was not strongly cytotoxic to PC12 cells, causing only mild cytotoxicity at 5000 is a subset of g/ml. In KRH media, CPF-generated ROS was observed at 4 and 5 h at 500 and 1000 is a subset of g/mL, and at 1 to 5 h at 5000 is a subset of g/mL CPF. In KRH + 4% BSA, ROS was seen only at 5 h in 5000 is a subset of g/mL CPF. Trolox significantly reduced CPF- and paraquat-induced ROS. Calculated CPF-albumin binding at 1, 10, and 100 is a subset of g/mL CPF in 4% BSA was 96%, 75%, and 15%. These data show CPF at >=500 is a subset of g/mL induced ROS in PC12 cells, but the addition of the antioxidant Trolox and 4% BSA dramatically reduced ROS levels.
Keywords: Antioxidants
Keywords: Data processing
Keywords: N3 11028:Neuropharmacology & toxicology
Keywords: Toxicology Abstracts; CSA Neurosciences Abstracts
Keywords: organophosphates
Keywords: Cholinesterase
Keywords: Chlorpyrifos
Keywords: Vitamin E
Keywords: Cytotoxicity
Keywords: Insecticides
Keywords: Pheochromocytoma cells
Keywords: Bovine serum albumin
Keywords: Reactive oxygen species
Keywords: Oxidative stress
Keywords: Fluorescent indicators
Keywords: X 24300:Methods
Keywords: Paraquat
Date revised - 2009-02-01
Language of summary - English
Pages - 17-23
ProQuest ID - 20276909
SubjectsTermNotLitGenreText - Reactive oxygen species; Pheochromocytoma cells; Vitamin E; Antioxidants; Cytotoxicity; Chlorpyrifos; Fluorescent indicators; Cholinesterase; Data processing; organophosphates; Oxidative stress; Insecticides; Paraquat; Bovine serum albumin
Last updated - 2011-12-14
British nursing index edition - Toxicology Mechanisms and Methods [Toxicol. Mech. Methods]. Vol. 18, no. 1, pp. 17-23. Jan 2008.
Corporate institution author - Geter, David R; Kan, H Lynn; Lowe, Ezra R; Rick, David L; Charles, Grantley D; Gollapudi, Bhaskar B; Mattsson, Joel L
DOI - MD-0009198917; 8883045; 1537-6516; 1537-6524 English

477. Ghazala; Mahboob, S; Asi, M R, and Ghazala. Determination of Organochlorine and Nitrogen Containing Pesticide Residues in Cirrhina Mrigala, Sediments and Water by Reverse Phase High Performance Liquid Chromatography. 2009; 29, 70-71.


Rec #: 48959
Keywords: SURVEY
Notes: Chemical of Concern: CPY
Abstract: Abstract: Some organochlorine and nitrogen containing pesticide residues in cultured mori fish (Cirrhina mrigala), sediment and water samples were determined to find out the extent of pesticide contamination and accumulation in the farm raised fish. Farmed raised fish of two weight groups designated as WI (250-750g) and W2 (800-1300g) were collected from a Local Fish Hatchery. The extracted residues were analyzed through reverse phase high performance liquid chromatography (HPLC) technique. a-Endosulfan, DDE, parathion methyl, isoproturon, atrazine and carbofuran were detected in fish. All of these pesticide residues including carbaryl and except for isoproturon were identified in the soil sediments, whereas in water samples all of these pesticide residues except isoproturon, and DDE were also identified. DDT, Heptachlor, Endosulfan, Chlorpyrifos, dimethoate, captan, Cypermethrin, carbaryl, Chlorobromuron and Chlorotoluron were absent from all samples of fish and water, whereas in sediments all these were absent except carbaryl. Total fat contents in flesh of Cirrhina mrigala were recorded as 1.24% plus or minus 0.005 and 3.44% plus or minus 0.026 under the weight groups WI and W2, respectively The pesticide residues level in Cirrhina mrigala was noted as 0.089 plus or minus 0.0007 and 0.411 plus or minus 0.09 mu g/g under weight groups WI and W2, respectively with highly significant differences at P<0.01. Maximum concentration of pesticides was recorded in fish of weight group W super(2) followed W sub(1) The level of all pesticide residues was lower than maximum residue limit in fish samples. In sediments DDE was remained highest while the same was not detected in water samples.
Keywords: Insecticides
Keywords: Pakistan
Keywords: Nitrous oxide
Keywords: Water sampling
Keywords: Liquid chromatography
Keywords: Pesticide residues
Keywords: P 2000:FRESHWATER POLLUTION
Keywords: DDE
Keywords: Carbaryl
Keywords: Fish
Keywords: Sediments
Keywords: Pollution Abstracts; Aqualine Abstracts; Water Resources Abstracts; ASFA 3: Aquatic Pollution & Environmental Quality
Date revised - 2012-11-01
Language of summary - English
Location - Pakistan
Pages - 70-71
ProQuest ID - 1171870145
SubjectsTermNotLitGenreText - Insecticides; Nitrous oxide; Water sampling; Liquid chromatography; Pesticide residues; DDE; Carbaryl; Fish; Sediments; Pakistan
Last updated - 2012-12-03
British nursing index edition - Proceedings of Pakistan Congress of Zoology [Proc. Pak. Congress Zool.]. Vol. 29, pp. 70-71. 2009.
Corporate institution author - Mahboob, S; Asi, M R
DOI - MD-0019808967; 17172951; 1013-3461 English

478. Ghedira, Jihene; Jebali, Jamel; Banni, Mohamed; Chouba, Lassaad; Boussetta, Hamadi; Lopez-Barea, Juan; Alhama, Jose, and Ghedira, Jihene. Use of Oxidative Stress Biomarkers in Carcinus Maenas to Assess Littoral Zone Contamination in Tunisia. 2011; 14, (1): 87-98.


Rec #: 47479
Keywords: SURVEY
Notes: Chemical of Concern: CPY
Abstract: Abstract: Biological effects of pollutants were studied in Carcinus maenas crabs from 3 polluted sites (Bizerte, Teboulba, Gargour) along the Tunisian littoral zone using biochemical biomarkers. A metal contamination gradient was found, Bizerte standing out as the most metal-polluted area. Gargour animals nonetheless showed higher oxidative stress responses, such as glutathione reductase and 6-phosphogluconate dehydrogenase activities, as well as malondialdehyde (MDA) levels in gills. The gills showed higher lipid peroxidation than did the digestive gland, in keeping with their respiratory role. Animals were also exposed for different periods to 2 model pollutants, cadmium and chlorpyriphos-ethyl. Although cadium induces oxidative stress, mainly in gills, thus increasing lipid peroxidation, principal-component analysis indicated that metal content in sediments and crabs from in-field monitoring does not fully correlate with oxidative stress biomarker responses. Catalase and MDA were the most sensitive biomarkers, and gills the most responsive organ. A lower catalase content in gills was linked to higher MDA levels.
Keywords: glutathione reductase
Keywords: Contamination
Keywords: Heavy metals
Keywords: Lipids
Keywords: Pollution effects
Keywords: Biomarkers
Keywords: dehydrogenase
Keywords: Carcinus maenas
Keywords: Pollutants
Keywords: Oxidative stress
Keywords: Glands
Keywords: Pollution Abstracts; ASFA 1: Biological Sciences & Living Resources; Ecology Abstracts
Keywords: Cadmium
Keywords: Tunisia
Keywords: Marine crustaceans
Keywords: Gills
Keywords: Malondialdehyde
Keywords: Littoral zone
Keywords: Bioindicators
Keywords: Metals
Keywords: Marine
Keywords: Peroxidation
Keywords: Decapoda
Keywords: P 2000:FRESHWATER POLLUTION
Keywords: Crustacea
Keywords: biomarkers
Keywords: Sediments
Keywords: Catalase
Keywords: Lipid peroxidation
Keywords: Q1 01286:Physiology, biochemistry, biophysics
Keywords: Digestive glands
Keywords: D 04040:Ecosystem and Ecology Studies
Date revised - 2012-10-01
Language of summary - English
Location - Tunisia
Pages - 87-98
ProQuest ID - 1113216973
SubjectsTermNotLitGenreText - Digestive glands; Contamination; Pollutants; Heavy metals; Pollution effects; Biomarkers; Marine crustaceans; Gills; Littoral zone; glutathione reductase; biomarkers; dehydrogenase; Sediments; Catalase; Lipid peroxidation; Oxidative stress; Glands; Cadmium; Malondialdehyde; Bioindicators; Metals; Peroxidation; Crustacea; Lipids; Decapoda; Carcinus maenas; Tunisia; Marine
Last updated - 2012-12-03
British nursing index edition - Aquatic Biology. Vol. 14, no. 1, pp. 87-98. 2011.
Corporate institution author - Ghedira, Jihene; Jebali, Jamel; Banni, Mohamed; Chouba, Lassaad; Boussetta, Hamadi; Lopez-Barea, Juan; Alhama, Jose
DOI - 228e857a-1d63-46c3-94a4-aa95750483b6; 17248227; CS1261853; 1864-7782 English

479. Gholami, A. ; Kassis, R.; Real, E.; Delmas, O.; Guadagnini, S.; Larrous, F.; Obach, D.; Prevost, M. C.; Jacob, Y., and Bourhy, H. Mitochondrial Dysfunction in Lyssavirus-Induced Apoptosis.


Rec #: 51259
Keywords: NO TOXICANT
Notes: Chemical of Concern: CPY
Abstract: COMMENTS: Cites: J Virol. 1999 Apr;73(4):2921-9 (medline /10074141)
COMMENTS: Cites: J Mol Biol. 1999 Feb 5;285(5):2105-17 (medline /9925788)
COMMENTS: Cites: Am J Hum Genet. 1999 Sep;65(3):611-20 (medline /10441567)
COMMENTS: Cites: Protein Sci. 2000 Jun;9(6):1162-76 (medline /10892809)
COMMENTS: Cites: Science. 2000 Aug 18;289(5482):1150-1 (medline /10970229)
COMMENTS: Cites: J Neurovirol. 2000 Oct;6(5):373-81 (medline /11031690)
COMMENTS: Cites: Biochemistry. 2000 Oct 24;39(42):12989-95 (medline /11041864)
COMMENTS: Cites: J Exp Med. 2001 Feb 19;193(4):509-19 (medline /11181702)
COMMENTS: Cites: EMBO J. 2001 Mar 1;20(5):951-60 (medline /11230119)
COMMENTS: Cites: J Med Microbiol. 2001 Mar;50(3):238-42 (medline /11232769)
COMMENTS: Cites: J Virol. 2001 Apr;75(7):3268-76 (medline /11238853)
COMMENTS: Cites: Annu Rev Immunol. 2001;19:475-96 (medline /11244044)
COMMENTS: Cites: Nat Rev Mol Cell Biol. 2001 May;2(5):339-49 (medline /11331908)
COMMENTS: Cites: Crit Rev Biochem Mol Biol. 2001;36(3):291-336 (medline /11450972)
COMMENTS: Cites: J Virol. 2001 Nov;75(22):10623-9 (medline /11602704)
COMMENTS: Cites: J Virol. 2001 Nov;75(22):10800-7 (medline /11602721)
COMMENTS: Cites: J Virol. 2002 Apr;76(7):3374-81 (medline /11884563)
COMMENTS: Cites: J Biol Chem. 2002 Sep 13;277(37):34424-33 (medline /12093802)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9503-8 (medline /12093916)
COMMENTS: Cites: Nat Immunol. 2002 Nov;3(11):1013-8 (medline /12407409)
COMMENTS: Cites: Exp Physiol. 2003 Jan;88(1):57-64 (medline /12525855)
COMMENTS: Cites: Cell. 2003 Jan 10;112(1):41-50 (medline /12526792)
COMMENTS: Cites: Annu Rev Immunol. 2003;21:377-423 (medline /12543935)
COMMENTS: Cites: Nat Cell Biol. 2003 Feb;5(2):97-9 (medline /12563272)
COMMENTS: Cites: J Virol. 2003 Apr;77(8):4658-69 (medline /12663772)
COMMENTS: Cites: J Biol Chem. 2003 Jun 13;278(24):22071-8 (medline /12676947)
COMMENTS: Cites: Biochem Biophys Res Commun. 2003 May 9;304(3):433-5 (medline /12729576)
COMMENTS: Cites: Biochem Biophys Res Commun. 2003 May 9;304(3):575-81 (medline /12729592)
COMMENTS: Cites: J Gen Virol. 2003 Jun;84(Pt 6):1613-21 (medline /12771432)
COMMENTS: Cites: J Virol. 2003 Oct;77(19):10537-47 (medline /12970438)
COMMENTS: Cites: Virology. 1992 Oct;190(2):845-8 (medline /1325709)
COMMENTS: Cites: Virology. 2003 Sep 30;314(2):549-61 (medline /14554083)
COMMENTS: Cites: Ann N Y Acad Sci. 2003 Dec;1010:598-603 (medline /15033799)
COMMENTS: Cites: Oncogene. 2004 Jun 24;23(29):4993-5003 (medline /15048072)
COMMENTS: Cites: Emerg Infect Dis. 2004 Jan;10(1):140-2 (medline /15078611)
COMMENTS: Cites: J Virol. 2004 Jun;78(12):6543-55 (medline /15163747)
COMMENTS: Cites: J Virol. 2004 Jul;78(14):7823-7 (medline /15220457)
COMMENTS: Cites: Science. 2004 Jul 30;305(5684):626-9 (medline /15286356)
COMMENTS: Cites: J Virol. 2004 Sep;78(17):9376-88 (medline /15308732)
COMMENTS: Cites: World J Gastroenterol. 2004 Oct 1;10(19):2805-8 (medline /15334674)
COMMENTS: Cites: Bioinformatics. 1998;14(10):846-56 (medline /9927713)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16774-9 (medline /15546991)
COMMENTS: Cites: Biochim Biophys Acta. 2005 Jan 7;1706(1-2):98-104 (medline /15620369)
COMMENTS: Cites: J Neurovirol. 2005 Feb;11(1):101-6 (medline /15804968)
COMMENTS: Cites: J Virol. 2005 Aug;79(15):10063-8 (medline /16014967)
COMMENTS: Cites: J Gen Virol. 2006 Nov;87(Pt 11):3379-84 (medline /17030873)
COMMENTS: Cites: Nucleic Acids Res. 2007;35(5):1522-32 (medline /17287294)
COMMENTS: Cites: Nature. 1995 Aug 24;376(6542):660-9 (medline /7651515)
COMMENTS: Cites: Yeast. 1995 Apr 15;11(4):355-60 (medline /7785336)
COMMENTS: Cites: Virology. 1993 May;194(1):70-81 (medline /8386891)
COMMENTS: Cites: J Virol. 1997 Jul;71(7):5603-7 (medline /9188634)
COMMENTS: Cites: Nat Genet. 1997 Jul;16(3):277-82 (medline /9207794)
COMMENTS: Cites: Annu Rev Biophys Biomol Struct. 1998;27:329-56 (medline /9646871)
COMMENTS: Cites: Science. 1998 Aug 28;281(5381):1309-12 (medline /9721092)
COMMENTS: Cites: J Mol Biol. 1998 Dec 11;284(4):1201-10 (medline /9837738)
COMMENTS: Cites: J Virol. 1999 Jan;73(1):242-50 (medline /9847327)
COMMENTS: Cites: J Virol. 1999 Jan;73(1):510-8 (medline /9847357)
COMMENTS: Cites: Trends Microbiol. 1999 Apr;7(4):160-5 (medline /10217831)
ABSTRACT: Lyssaviruses are highly neurotropic viruses associated with neuronal apoptosis. Previous observations have indicated that the matrix proteins (M) of some lyssaviruses induce strong neuronal apoptosis. However, the molecular mechanism(s) involved in this phenomenon is still unknown. We show that for Mokola virus (MOK), a lyssavirus of low pathogenicity, the M (M-MOK) targets mitochondria, disrupts the mitochondrial morphology, and induces apoptosis. Our analysis of truncated M-MOK mutants suggests that the information required for efficient mitochondrial targeting and dysfunction, as well as caspase-9 activation and apoptosis, is held between residues 46 and 110 of M-MOK. We used a yeast two-hybrid approach, a coimmunoprecipitation assay, and confocal microscopy to demonstrate that M-MOK physically associates with the subunit I of the cytochrome c (cyt-c) oxidase (CcO) of the mitochondrial respiratory chain; this is in contrast to the M of the highly pathogenic Thailand lyssavirus (M-THA). M-MOK expression induces a significant decrease in CcO activity, which is not the case with M-THA. M-MOK mutations (K77R and N81E) resulting in a similar sequence to M-THA at positions 77 and 81 annul cyt-c release and apoptosis and restore CcO activity. As expected, the reverse mutations, R77K and E81N, introduced in M-THA induce a phenotype similar to that due to M-MOK. These features indicate a novel mechanism for energy depletion during lyssavirus-induced apoptosis.
MESH HEADINGS: Amino Acid Sequence
MESH HEADINGS: Amino Acid Substitution/genetics
MESH HEADINGS: Animals
MESH HEADINGS: *Apoptosis
MESH HEADINGS: Caspase 9/metabolism
MESH HEADINGS: Cell Line
MESH HEADINGS: Cricetinae
MESH HEADINGS: Electron Transport Complex IV/antagonists &
MESH HEADINGS: inhibitors/*metabolism
MESH HEADINGS: Humans
MESH HEADINGS: Immunoprecipitation
MESH HEADINGS: Lyssavirus/genetics/*pathogenicity
MESH HEADINGS: Mice
MESH HEADINGS: Microscopy, Confocal
MESH HEADINGS: Mitochondria/*physiology/*virology
MESH HEADINGS: Molecular Sequence Data
MESH HEADINGS: Mutagenesis, Site-Directed
MESH HEADINGS: Protein Binding
MESH HEADINGS: Two-Hybrid System Techniques
MESH HEADINGS: Viral Proteins/genetics/metabolism eng

480. Ghosh, R. P.; Horowitz-Scherer, R. A.; Nikitina, T.; Shlyakhtenko, L. S., and Woodcock, C. L. Mecp2 Binds Cooperatively to Its Substrate and Competes With Histone H1 for Chromatin Binding Sites.


Rec #: 50469
Keywords: NO TOXICANT
Notes: Chemical of Concern: CPY
Abstract: COMMENTS: Cites: Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14173-8 (medline /9826673)
COMMENTS: Cites: Methods Cell Biol. 1998;53:139-64 (medline /9348508)
COMMENTS: Cites: EMBO Rep. 2002 Aug;3(8):760-6 (medline /12151335)
COMMENTS: Cites: Anal Biochem. 2003 Sep 1;320(1):104-24 (medline /12895474)
COMMENTS: Cites: Nat Genet. 1999 Oct;23(2):185-8 (medline /10508514)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):127-32 (medline /10618382)
COMMENTS: Cites: Biophys J. 2000 Mar;78(3):1606-19 (medline /10692345)
COMMENTS: Cites: Nature. 2000 Apr 6;404(6778):604-9 (medline /10766243)
COMMENTS: Cites: Science. 2000 Nov 10;290(5494):1127-31 (medline /11073444)
COMMENTS: Cites: Nature. 2000 Dec 14;408(6814):873-6 (medline /11130728)
COMMENTS: Cites: Nature. 2000 Dec 14;408(6814):877-81 (medline /11130729)
COMMENTS: Cites: Biochemistry. 2001 Aug 14;40(32):9638-46 (medline /11583164)
COMMENTS: Cites: Biochemistry. 2001 Nov 6;40(44):13378-89 (medline /11683648)
COMMENTS: Cites: J Cell Sci. 2001 Nov;114(Pt 21):3885-97 (medline /11719555)
COMMENTS: Cites: Genes Dev. 2002 Jan 1;16(1):6-21 (medline /11782440)
COMMENTS: Cites: Protein Sci. 2002 Sep;11(9):2067-79 (medline /12192063)
COMMENTS: Cites: Am J Hum Genet. 2002 Dec;71(6):1259-72 (medline /12442230)
COMMENTS: Cites: Science. 2003 Jan 31;299(5607):721-5 (medline /12560555)
COMMENTS: Cites: J Biol Chem. 2003 Aug 22;278(34):32181-8 (medline /12788925)
COMMENTS: Cites: Mol Cell Biol. 2003 Jul;23(13):4559-72 (medline /12808097)
COMMENTS: Cites: Science. 2003 Oct 31;302(5646):885-9 (medline /14593183)
COMMENTS: Cites: Science. 2003 Oct 31;302(5646):890-3 (medline /14593184)
COMMENTS: Cites: J Biol Chem. 2004 Mar 5;279(10):8701-7 (medline /14668337)
COMMENTS: Cites: Bioessays. 2004 Mar;26(3):217-20 (medline /14988922)
COMMENTS: Cites: Anal Biochem. 2004 Mar 15;326(2):234-56 (medline /15003564)
COMMENTS: Cites: Biophys Chem. 2004 Mar 1;108(1-3):127-40 (medline /15043926)
COMMENTS: Cites: Biophys J. 2004 Jun;86(6):3473-95 (medline /15189848)
COMMENTS: Cites: J Mol Biol. 2004 Aug 27;341(5):1145-59 (medline /15321712)
COMMENTS: Cites: Science. 2004 Nov 26;306(5701):1571-3 (medline /15567867)
COMMENTS: Cites: Nat Genet. 2005 Jan;37(1):31-40 (medline /15608638)
COMMENTS: Cites: Nature. 2005 Jul 7;436(7047):138-41 (medline /16001076)
COMMENTS: Cites: Mol Cell. 2005 Sep 2;19(5):667-78 (medline /16137622)
COMMENTS: Cites: Cell. 2005 Dec 29;123(7):1199-212 (medline /16377562)
COMMENTS: Cites: Biochemistry. 2006 Jan 10;45(1):152-8 (medline /16388590)
COMMENTS: Cites: Chromosome Res. 2006;14(1):17-25 (medline /16506093)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16236-41 (medline /17060627)
COMMENTS: Cites: Mol Cell Biol. 2007 Feb;27(3):864-77 (medline /17101771)
COMMENTS: Cites: J Comp Neurol. 2007 Apr 1;501(4):526-42 (medline /17278130)
COMMENTS: Cites: J Biol Chem. 2007 May 18;282(20):15057-64 (medline /17371874)
COMMENTS: Cites: J Biol Chem. 2007 Sep 21;282(38):28237-45 (medline /17660293)
COMMENTS: Cites: Biochemistry. 2007 Oct 2;46(39):11128-36 (medline /17845057)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19416-21 (medline /18042715)
COMMENTS: Cites: Mol Cell. 2008 Feb 29;29(4):525-31 (medline /18313390)
COMMENTS: Cites: Nucleic Acids Res. 2004;32(1):e13 (medline /14722228)
COMMENTS: Cites: J Mol Biol. 2004 May 7;338(4):695-709 (medline /15099738)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6515-8 (medline /1650472)
COMMENTS: Cites: Nat Struct Mol Biol. 2006 Apr;13(4):305-10 (medline /16715048)
COMMENTS: Cites: J Mol Biol. 2006 Oct 6;362(5):1043-59 (medline /16935303)
COMMENTS: Cites: J Biol Chem. 2008 Jul 18;283(29):20523-34 (medline /18499664)
COMMENTS: Cites: Methods Mol Biol. 2009;543:337-51 (medline /19378175)
COMMENTS: Cites: Biochemistry. 2009 Aug 25;48(33):7842-8 (medline /19618963)
COMMENTS: Cites: Cell. 1991 Mar 22;64(6):1123-34 (medline /2004419)
COMMENTS: Cites: Biochemistry. 2010 May 25;49(20):4395-410 (medline /20405910)
COMMENTS: Cites: J Mol Biol. 1990 Feb 20;211(4):883-96 (medline /2313700)
COMMENTS: Cites: J Mol Biol. 1995 Sep 22;252(3):305-13 (medline /7563052)
COMMENTS: Cites: J Cell Sci. 2008 Apr 1;121(Pt 7):1128-37 (medline /18334558)
COMMENTS: Cites: Mutat Res. 2008 Dec 1;647(1-2):39-43 (medline /18692077)
COMMENTS: Cites: Methods. 2009 Mar;47(3):206-13 (medline /18835446)
COMMENTS: Cites: Science. 2009 Apr 17;324(5925):407-10 (medline /19372434)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13317-22 (medline /19651606)
COMMENTS: Cites: Genome Res. 2009 Nov;19(11):2101-12 (medline /19720867)
COMMENTS: Cites: Mol Cell. 2010 Feb 26;37(4):457-68 (medline /20188665)
COMMENTS: Cites: J Cell Biol. 1995 Dec;131(6 Pt 1):1365-76 (medline /8522597)
COMMENTS: Cites: Mol Cell Biol. 1996 Jan;16(1):414-21 (medline /8524323)
COMMENTS: Cites: Cell. 1997 Feb 21;88(4):471-81 (medline /9038338)
COMMENTS: Cites: Nature. 1997 Sep 18;389(6648):251-60 (medline /9305837)
COMMENTS: Cites: Nature. 1998 Apr 30;392(6679):885-8 (medline /9582068)
COMMENTS: Cites: Biochemistry. 1998 Oct 20;37(42):14776-87 (medline /9778352)
ABSTRACT: Sporadic mutations in the hMeCP2 gene, coding for a protein that preferentially binds symmetrically methylated CpGs, result in the severe neurological disorder Rett syndrome (RTT). In the present work, employing a wide range of experimental approaches, we shed new light on the many levels of MeCP2 interaction with DNA and chromatin. We show that strong methylation-independent as well as methylation-dependent binding by MeCP2 is influenced by DNA length. Although MeCP2 is strictly monomeric in solution, its binding to DNA is cooperative, with dimeric binding strongly correlated with methylation density, and strengthened by nearby A/T repeats. Dimeric binding is abolished in the F155S and R294X severe RTT mutants. MeCP2 also binds chromatin in vitro, resulting in compaction-related changes in nucleosome architecture that resemble the classical zigzag motif induced by histone H1 and considered important for 30-nm-fiber formation. In vivo chromatin binding kinetics and in vitro steady-state nucleosome binding of both MeCP2 and H1 provide strong evidence for competition between MeCP2 and H1 for common binding sites. This suggests that chromatin binding by MeCP2 and H1 in vivo should be viewed in the context of competitive multifactorial regulation.
MESH HEADINGS: AT Rich Sequence/genetics
MESH HEADINGS: Animals
MESH HEADINGS: Azacitidine/analogs &
MESH HEADINGS: derivatives/pharmacology
MESH HEADINGS: BALB 3T3 Cells
MESH HEADINGS: Binding Sites
MESH HEADINGS: Binding, Competitive
MESH HEADINGS: Chromatin/genetics/*metabolism
MESH HEADINGS: DNA/genetics/*metabolism
MESH HEADINGS: DNA Methylation/drug effects
MESH HEADINGS: Enzyme Inhibitors/pharmacology
MESH HEADINGS: Fluorescence Polarization
MESH HEADINGS: Green Fluorescent Proteins/genetics/metabolism
MESH HEADINGS: Histones/genetics/*metabolism
MESH HEADINGS: Humans
MESH HEADINGS: Methyl-CpG-Binding Protein 2/chemistry/genetics/*metabolism
MESH HEADINGS: Mice
MESH HEADINGS: Microscopy, Atomic Force
MESH HEADINGS: Microscopy, Electron
MESH HEADINGS: Microscopy, Fluorescence
MESH HEADINGS: Mutation
MESH HEADINGS: Nucleosomes/genetics/metabolism/ultrastructure
MESH HEADINGS: Protein Binding
MESH HEADINGS: Protein Multimerization eng

481. Ghoshdastidar, A. J.; Saunders, J. E.; Brown, K. H., and Tong, A. Z. Membrane bioreactor treatment of commonly used organophosphate pesticides. 2012; 47, (7): 742-750.


Rec #: 60639
Keywords: FATE
Notes: Chemical of Concern: CPY
Abstract: Abstract: Five pesticide formulations registered for use in Canada containing organophosphate-insecticide active ingredients azinphos-methyl, chlorpyrifos, diazinon, malathion and phorate were subjected to treatment by membrane bioreactor (MBR) technology. The target active ingredients were introduced to the MBR at ppm level concentrations. The biodegradation of these compounds was analyzed daily using selected ion monitoring gas chromatography-mass spectrometry (GC/MS-SIM) following extraction of the analytes using solid-phase extraction (SPE). Amounts measuring 83 % to 98 % of the target analytes were removed with steady-state concentrations being reached within 5 days of their introduction. The dissolved oxygen, temperature, pH, and total heterotrophic bacterial population were monitored daily to ensure optimal conditions for biodegradation. The quality of the effluent from the MBR was assessed daily through spectrophotometric methods. Measurements were conducted for the concentration of ammonia, nitrate, nitrite, total and reactive phosphorus, as well as the chemical oxygen demand (COD) of the effluent. This study demonstrated that the MBR technology is feasible and efficient for treatment of organophosphate pesticides without introducing additional chemical additives.
Keywords: Membrane bioreactor, organophosphate pesticides, wastewater treatment,
ISI Document Delivery No.: 936SG

482. Ginsberg, Gary; Neafsey, Patricia; Hattis, Dale; Guyton, Kathryn Z; Sonawane, Babasaheb, and Johns, Douglas O. Genetic Polymorphism in Paraoxonase 1 (Pon1): Population Distribution of Pon1 Activity. 2009; 12, (5/6): 473-507.


Rec #: 48459
Keywords: HUMAN HEALTH
Notes: Chemical of Concern: CPY
Abstract: Abstract: Paraoxonase-1 (PON1) is a serum esterase that hydrolyzes the activated oxon form of several organophosphates. The central role of PON1 in detoxification of organophosphate (OP) pesticides was demonstrated in knockout mouse studies, suggesting that human variability in PON1 needs to be considered in health risk assessments involving exposure to these pesticides. The current analysis focused on two genetic loci in which polymorphisms demonstrated to affect PON1 activity. Detailed kinetic studies and population studies found that the *192Q (wild type) allele is more active toward some substrates (such as
1   ...   74   75   76   77   78   79   80   81   ...   151


The database is protected by copyright ©dentisty.org 2016
send message

    Main page