Appendix 2-5: Rejected ecotox bibliography for Chlorpyrifos



Download 6.25 Mb.
Page76/151
Date conversion04.02.2017
Size6.25 Mb.
1   ...   72   73   74   75   76   77   78   79   ...   151
This work addresses the feasibility of in vivo administration of rePON1, and its HDL complex, as a potentially therapeutic agent dubbed BL-3050. For stability studies we applied different challenges related to the in vivo disfunctionalization of HDL and PON1 and tested for inactivation of PON1's activity. We applied acute, repetitive administrations of BL-3050 in mice to assess its toxicity and adverse immune responses. The in vivo efficacy of recombinant PON1 and BL-3050 were tested with an animal model of chlorpyrifos-oxon poisoning. Inactivation studies show significantly improved in vitro lifespan of the engineered rePON1 relative to human PON1. Significant sequence changes relative to human PON1 might hamper the in vivo applicability of BL-3050 due to adverse immune responses. However, we observed no toxic effects in mice subjected to repetitive administration of BL-3050, suggesting that BL-3050 could be safely used. To further evaluate the activity of BL-3050 in vivo, we applied an animal model that mimics human organophosphate poisoning. In these studies, a significant advantages of rePON1 and BL-3050 (>87.5% survival versus <37.5% in the control groups) was observed. Furthermore, BL-3050 and rePON1 were superior to the conventional treatment of atropine-2-PAM as a prophylactic treatment for OP poisoning. In vitro and in vivo data described here demonstrate the potential advantages of rePON1 and BL-3050 for treatment of OP toxicity and chronic cardiovascular diseases like atherosclerosis. The in vivo data also suggest that rePON1 and BL-3050 are stable and safe, and could be used for acute, and possibly repeated treatments, with no adverse effects.
Keywords: 70-18-8
Keywords: 2921-88-2
Keywords: Animals
Keywords: Enzyme Stability -- genetics
Keywords: Glutathione
Keywords: Organophosphates
Keywords: 1-palmitoyl-2-oleoylphosphatidylcholine
Keywords: Humans
Keywords: Protein Engineering -- methods
Keywords: Aryldialkylphosphatase
Keywords: Disease Models, Animal
Keywords: Lipoproteins, HDL -- chemistry
Keywords: Organophosphates -- antagonists & inhibitors
Keywords: Aryldialkylphosphatase -- administration & dosage
Keywords: Aryldialkylphosphatase -- antagonists & inhibitors
Keywords: Lipoproteins, HDL -- administration & dosage
Keywords: TE895536Y5
Keywords: Phosphatidylcholines -- administration & dosage
Keywords: Recombinant Proteins -- chemistry
Keywords: Recombinant Proteins -- antagonists & inhibitors
Keywords: Lipoproteins, HDL -- antagonists & inhibitors
Keywords: Male
Keywords: Recombinant Proteins -- administration & dosage
Keywords: Chlorpyrifos -- administration & dosage
Keywords: Aryldialkylphosphatase -- genetics
Keywords: Injections, Intravenous
Keywords: Recombinant Proteins
Keywords: Lipoproteins, HDL -- physiology
Keywords: Lipoproteins, HDL
Keywords: O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphate
Keywords: PON1 protein, human
Keywords: Mice
Keywords: Aryldialkylphosphatase -- chemistry
Keywords: Glutathione -- administration & dosage
Keywords: EC 3.1.8.1
Keywords: Chlorpyrifos
Keywords: 0
Keywords: Organophosphates -- toxicity
Keywords: 5598-15-2
Keywords: Chlorpyrifos -- analogs & derivatives
Keywords: Mice, Inbred C57BL
Keywords: Enzyme Stability -- drug effects
Keywords: Phosphatidylcholines
Keywords: Female
Date completed - 2010-06-03
Date created - 2009-12-01
Date revised - 2012-12-20
Language of summary - English
Pages - 18
ProQuest ID - 733132494
SuppNotes - Cites: Crit Rev Clin Lab Sci. 2009;46(2):83-106[19255916]; Cites: Atherosclerosis. 2001 Mar;155(1):229-35[11223446]; Cites: Chem Res Toxicol. 2008 Aug;21(8):1524-9[18597495]; Cites: Curr Opin Immunol. 2008 Aug;20(4):460-70[18656541]; Cites: Biochemistry. 2008 Mar 25;47(12):3875-82[18302337]; Cites: J Lipid Res. 2008 Jun;49(6):1246-53[18314464]; Cites: JAMA. 2008 Mar 19;299(11):1265-76[18349088]; Cites: Biochim Biophys Acta. 2007 Jul;1774(7):874-83[17556053]; Cites: Biochem Biophys Res Commun. 2006 Dec 15;351(2):492-8[17070779]; Cites: J Lipid Res. 2006 Nov;47(11):2492-502[16914770]; Cites: Pharmacol Rev. 2006 Sep;58(3):342-74[16968945]; Cites: Curr Opin Mol Ther. 2006 Jun;8(3):198-205[16774039]; Cites: Atherosclerosis. 2006 Jul;187(1):74-81[16229851]; Cites: FEBS J. 2006 May;273(9):1906-19[16640555]; Cites: J Biol Chem. 2006 Mar 17;281(11):7657-65[16407304]; Cites: Curr Atheroscler Rep. 2006 Mar;8(2):163-7[16510051]; Cites: Biochemistry. 2005 Sep 6;44(35):11843-54[16128586]; Cites: Arterioscler Thromb Vasc Biol. 2005 Jul;25(7):1325-31[15831812]; Cites: Arterioscler Thromb Vasc Biol. 2005 Jun;25(6):1102-11[15790935]; Cites: J Lipid Res. 2005 Jun;46(6):1239-47[15772423]; Cites: Biochemistry. 2005 Apr 26;44(16):6371-82[15835926]; Cites: J Clin Endocrinol Metab. 2005 Apr;90(4):2264-9[15687341]; Cites: Atherosclerosis. 2005 Mar;179(1):69-77[15721011]; Cites: Curr Opin Struct Biol. 2005 Feb;15(1):50-6[15718133]; Cites: Free Radic Biol Med. 2005 Jan 15;38(2):153-63[15607899]; Cites: Nat Genet. 2005 Jan;37(1):73-6[15568024]; Cites: Br J Pharmacol Chemother. 1957 Dec;12(4):438-46[13489171]; Cites: Drug Metab Dispos. 1995 Sep;23(9):935-44[8565784]; Cites: J Clin Invest. 1998 Apr 15;101(8):1581-90[9541487]; Cites: Nature. 1998 Jul 16;394(6690):284-7[9685159]; Cites: Arterioscler Thromb Vasc Biol. 1999 Sep;19(9):2214-25[10479665]; Cites: J Physiol Paris. 1998 Oct-Dec;92(5-6):357-62[9789837]; Cites: Drug Metab Dispos. 1998 Jul;26(7):653-60[9660847]; Cites: J Clin Invest. 1997 Apr 15;99(8):2005-19[9109446]; Cites: J Biol Chem. 1997 Nov 21;272(47):29711-20[9368040]; Cites: Biochem Pharmacol. 1996 Aug 9;52(3):401-6[8687493]; Cites: Nat Genet. 1996 Nov;14(3):334-6[8896566]; Cites: J Clin Invest. 1995 Dec;96(6):2882-91[8675659]; Cites: Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7187-91[7638166]; Cites: Methods Enzymol. 1995;251:8-28[7651233]; Cites: Toxicol Lett. 1995 Apr;76(3):219-26[7539166]; Cites: Drug Metab Dispos. 1991 Jan-Feb;19(1):100-6[1673382]; Cites: J Biol Chem. 1986 Jan 5;261(1):495-503[3941085]; Cites: Biochim Biophys Acta. 1983 Feb 7;750(2):353-64[6407531]; Cites: J Biol Chem. 1982 Apr 25;257(8):4535-40[6802835]; Cites: Methods Enzymol. 1979;63:294-336[41156]; Cites: Curr Opin Lipidol. 2004 Aug;15(4):399-404[15243212]; Cites: Nat Struct Mol Biol. 2004 May;11(5):412-9[15098021]; Cites: Free Radic Biol Med. 2004 Feb 15;36(4):464-70[14975449]; Cites: Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):482-7[14695884]; Cites: Circulation. 2003 Dec 2;108(22):2751-6[14638544]; Cites: JAMA. 2003 Nov 5;290(17):2292-300[14600188]; Cites: Curr Opin Biotechnol. 2003 Aug;14(4):444-50[12943856]; Cites: Drug Metab Dispos. 2000 Nov;28(11):1335-42[11038162]; Cites: Pharmacogenetics. 2000 Dec;10(9):767-79[11191881]; Cites: Biochim Biophys Acta. 2000 Jan 17;1483(2):217-35[10634938]; Cites: Diabetologia. 2000 Mar;43(3):312-20[10768092]; Cites: Biochem J. 2000 Mar 1;346 Pt 2:345-54[10677352]; Cites: Free Radic Res. 2003 Jan;37(1):77-83[12653220]; Cites: Protein Expr Purif. 2003 Jan;27(1):98-103[12509990]; Cites: J Biol Chem. 2002 Sep 6;277(36):33386-97[12080042]; Cites: Acta Diabetol. 2001 Dec;38(4):163-9[11855794]; Cites: J Biol Chem. 2002 Feb 8;277(6):4301-8[11726658]; Cites: Nat Methods. 2008 Nov;5(11):939-42[18931667]
Last updated - 2013-01-19
British nursing index edition - BMC clinical pharmacology, 2009, 9:18
Corporate institution author - Gaidukov, Leonid; Bar, Dganit; Yacobson, Shiri; Naftali, Esmira; Kaufman, Olga; Tabakman, Rinat; Tawfik, Dan S; Levy-Nissenbaum, Etgar
DOI - MEDL-19922610; 19922610; PMC2785756; 1472-6904 eng

450. Gaisler-Salomon, I.; Miller, G. M.; Chuhma, N.; Lee, S.; Zhang, H.; Ghoddoussi, F.; Lewandowski, N.; Fairhurst, S.; Wang, Y.; Conjard-Duplany, A.; Masson, J.; Balsam, P.; Hen, R.; Arancio, O.; Galloway, M. P.; Moore, H. M.; Small, S. A., and Rayport, S. Glutaminase-Deficient Mice Display Hippocampal Hypoactivity, Insensitivity to Pro-Psychotic Drugs and Potentiated Latent Inhibition: Relevance to Schizophrenia .


Rec #: 50039
Keywords: HUMAN HEALTH
Notes: Chemical of Concern: CPY
Abstract: COMMENTS: Cites: Neuropsychopharmacology. 2005 Dec;30(12):2275-82 (medline /16034443)
COMMENTS: Cites: Nat Neurosci. 2005 Nov;8(11):1586-94 (medline /16234811)
COMMENTS: Cites: Neuron. 2006 Feb 16;49(4):603-15 (medline /16476668)
COMMENTS: Cites: Neuropsychopharmacology. 2007 Mar;32(3):719-27 (medline /16525415)
COMMENTS: Cites: Schizophr Res. 2006 Apr;83(2-3):247-56 (medline /16540291)
COMMENTS: Cites: Psychopharmacology (Berl). 2006 May;186(1):64-81 (medline /16550385)
COMMENTS: Cites: J Neurosci. 2006 Mar 22;26(12):3169-81 (medline /16554468)
COMMENTS: Cites: Biol Psychiatry. 2006 Aug 1;60(3):253-64 (medline /16581031)
COMMENTS: Cites: J Neurosci. 2006 Apr 26;26(17):4660-71 (medline /16641247)
COMMENTS: Cites: Nat Neurosci. 2006 Aug;9(8):1009-18 (medline /16819522)
COMMENTS: Cites: Neuron. 2006 Oct 5;52(1):179-96 (medline /17015235)
COMMENTS: Cites: Nature. 2007 Jan 11;445(7124):168-76 (medline /17151600)
COMMENTS: Cites: Eur J Neurosci. 2007 Jan;25(1):281-90 (medline /17241289)
COMMENTS: Cites: Int Rev Neurobiol. 2007;78:69-108 (medline /17349858)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4642-6 (medline /17360577)
COMMENTS: Cites: Psychopharmacology (Berl). 2007 Jul;193(1):121-36 (medline /17384937)
COMMENTS: Cites: Neurotoxicol Teratol. 2007 Jul-Aug;29(4):466-75 (medline /17466488)
COMMENTS: Cites: J Neurosci. 2007 Jul 18;27(29):7731-9 (medline /17634367)
COMMENTS: Cites: Arch Neurol. 2007 Oct;64(10):1467-77 (medline /17923630)
COMMENTS: Cites: Neurochem Int. 2008 Mar-Apr;52(4-5):809-25 (medline /18006192)
COMMENTS: Cites: Brain Res Bull. 2008 May 15;76(1-2):1-7 (medline /18395604)
COMMENTS: Cites: Prog Neuropsychopharmacol Biol Psychiatry. 2008 Jul 1;32(5):1312-9 (medline /18514376)
COMMENTS: Cites: Neurotoxicology. 2008 Jul;29(4):740-7 (medline /18562008)
COMMENTS: Cites: Psychol Med. 2009 Feb;39(2):199-209 (medline /18588739)
COMMENTS: Cites: Psychopharmacology (Berl). 2009 Jan;202(1-3):385-96 (medline /18709358)
COMMENTS: Cites: Neuropsychopharmacology. 2009 May;34(6):1578-89 (medline /19078949)
COMMENTS: Cites: Brain Res Rev. 2007 Apr;54(1):92-112 (medline /17306884)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5638-43 (medline /17374720)
COMMENTS: Cites: Trends Neurosci. 2007 May;30(5):220-7 (medline /17400299)
COMMENTS: Cites: Neurochem Int. 2007 Jul-Sep;51(2-4):165-72 (medline /17664024)
COMMENTS: Cites: Behav Res Methods. 2007 May;39(2):175-91 (medline /17695343)
COMMENTS: Cites: Nat Med. 2007 Sep;13(9):1102-7 (medline /17767166)
COMMENTS: Cites: J Neurosci. 2007 Oct 17;27(42):11424-30 (medline /17942737)
COMMENTS: Cites: Neuroimage. 2008 Mar 1;40(1):289-97 (medline /18187342)
COMMENTS: Cites: Biol Psychiatry. 2008 Nov 1;64(9):810-4 (medline /18550032)
COMMENTS: Cites: Schizophr Res. 2008 Aug;103(1-3):71-82 (medline /18562176)
COMMENTS: Cites: Psychol Med. 2009 Feb;39(2):197-8 (medline /18694541)
COMMENTS: Cites: Hippocampus. 1997;7(1):73-7 (medline /9138670)
COMMENTS: Cites: Am J Psychiatry. 1997 Jun;154(6):805-11 (medline /9167508)
COMMENTS: Cites: Psychopharmacology (Berl). 1997 Jul;132(2):169-80 (medline /9266614)
COMMENTS: Cites: Prog Neuropsychopharmacol Biol Psychiatry. 2007 Oct 1;31(7):1410-8 (medline /17669570)
COMMENTS: Cites: J Neurosci. 2007 Aug 22;27(34):9192-200 (medline /17715355)
COMMENTS: Cites: Neuropsychopharmacology. 2008 Jun;33(7):1690-703 (medline /17805312)
COMMENTS: Cites: Brain Res. 1992 Mar 6;574(1-2):98-104 (medline /1379112)
COMMENTS: Cites: Science. 1992 May 1;256(5057):675-7 (medline /1585183)
COMMENTS: Cites: Am J Psychiatry. 1991 Oct;148(10):1301-8 (medline /1654746)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1991 May 1;88(9):3633-6 (medline /1673789)
COMMENTS: Cites: Brain Res Mol Brain Res. 1990 May;7(4):317-33 (medline /2163007)
COMMENTS: Cites: J Neurosci. 1990 Apr;10(4):1062-9 (medline /2329367)
COMMENTS: Cites: Br J Psychiatry. 1990 Jul;157:50-4 (medline /2397362)
COMMENTS: Cites: J Histochem Cytochem. 1986 Mar;34(3):317-26 (medline /2419390)
COMMENTS: Cites: Neurochem Res. 1988 Jun;13(6):535-8 (medline /2900481)
COMMENTS: Cites: Pharmacol Biochem Behav. 1987 Sep;28(1):29-33 (medline /3116561)
COMMENTS: Cites: Behav Brain Res. 1988 Nov 1;31(1):47-59 (medline /3228475)
COMMENTS: Cites: J Biol Chem. 1973 Jan 10;248(1):162-8 (medline /4692829)
COMMENTS: Cites: J Neurosci Methods. 1984 May;11(1):47-60 (medline /6471907)
COMMENTS: Cites: Psychopharmacology (Berl). 1993;112(2-3):315-23 (medline /7871036)
COMMENTS: Cites: Synapse. 1994 Dec;18(4):337-42 (medline /7886626)
COMMENTS: Cites: Behav Neurosci. 1993 Feb;107(1):23-33 (medline /8447955)
COMMENTS: Cites: Annu Rev Nutr. 1995;15:133-59 (medline /8527215)
COMMENTS: Cites: Behav Brain Res. 1995 Nov;71(1-2):1-10 (medline /8747170)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9235-40 (medline /8799184)
COMMENTS: Cites: Neuropsychopharmacology. 1997 Jan;16(1):42-50 (medline /8981387)
COMMENTS: Cites: J Neurosci. 1997 Apr 15;17(8):2921-7 (medline /9092613)
COMMENTS: Cites: Neuropsychopharmacology. 1998 Aug;19(2):105-13 (medline /9629564)
COMMENTS: Cites: Science. 1998 Aug 28;281(5381):1349-52 (medline /9721099)
COMMENTS: Cites: Brain Res. 1999 Oct 2;843(1-2):171-83 (medline /10528123)
COMMENTS: Cites: J Psychiatr Res. 1999 Nov-Dec;33(6):523-33 (medline /10628529)
COMMENTS: Cites: Neuropsychopharmacology. 2000 Apr;22(4):400-12 (medline /10700659)
COMMENTS: Cites: Brain Res Brain Res Rev. 2000 Sep;33(2-3):275-307 (medline /11011070)
COMMENTS: Cites: Eur J Neurosci. 2000 Dec;12(12):4457-66 (medline /11122356)
COMMENTS: Cites: J Abnorm Psychol. 2000 Nov;109(4):761-7 (medline /11196002)
COMMENTS: Cites: Nat Rev Neurosci. 2001 Jan;2(1):51-61 (medline /11253359)
COMMENTS: Cites: Psychopharmacology (Berl). 2001 Jul;156(2-3):234-58 (medline /11549226)
COMMENTS: Cites: J Neural Transm. 2001;108(10):1181-96 (medline /11725821)
COMMENTS: Cites: Hippocampus. 2001;11(5):520-8 (medline /11732705)
COMMENTS: Cites: Hippocampus. 2001;11(5):543-50 (medline /11732707)
COMMENTS: Cites: Toxicol Lett. 2002 Mar 10;128(1-3):107-15 (medline /11869822)
COMMENTS: Cites: J Cell Biol. 2002 Apr 29;157(3):349-55 (medline /11980913)
COMMENTS: Cites: Science. 2002 Jul 12;297(5579):211-8 (medline /12040087)
COMMENTS: Cites: Am J Psychiatry. 2002 Jul;159(7):1165-73 (medline /12091195)
COMMENTS: Cites: Biochem J. 2002 Nov 15;368(Pt 1):301-8 (medline /12164789)
COMMENTS: Cites: Mol Psychiatry. 2002;7(10):1039-53 (medline /12476318)
COMMENTS: Cites: Psychopharmacology (Berl). 2003 Apr;166(4):333-42 (medline /12599023)
COMMENTS: Cites: Psychopharmacology (Berl). 2003 Sep;169(3-4):257-97 (medline /12601500)
COMMENTS: Cites: J Cereb Blood Flow Metab. 2003 Mar;23(3):285-300 (medline /12621304)
COMMENTS: Cites: Neuropsychopharmacology. 2003 Jun;28(6):1117-24 (medline /12700703)
COMMENTS: Cites: Psychol Med. 2003 Oct;33(7):1249-61 (medline /14580079)
COMMENTS: Cites: Biol Psychiatry. 2003 Dec 1;54(11):1241-8 (medline /14643092)
COMMENTS: Cites: Neuropharmacology. 2004 Feb;46(2):179-91 (medline /14680757)
COMMENTS: Cites: Ann N Y Acad Sci. 2003 Nov;1003:113-8 (medline /14684439)
COMMENTS: Cites: J Neurosci. 2004 Feb 4;24(5):1136-48 (medline /14762132)
COMMENTS: Cites: Neurochem Int. 2004 Jul-Aug;45(2-3):285-96 (medline /15145544)
COMMENTS: Cites: Nature. 2004 Oct 7;431(7009):699-703 (medline /15470431)
COMMENTS: Cites: J Abnorm Psychol. 2004 Nov;113(4):509-21 (medline /15535784)
COMMENTS: Cites: Trends Neurosci. 2004 Dec;27(12):735-43 (medline /15541514)
COMMENTS: Cites: Biol Psychiatry. 2004 Dec 15;56(12):931-7 (medline /15601602)
COMMENTS: Cites: Eur Psychiatry. 2005 Jan;20(1):45-9 (medline /15642443)
COMMENTS: Cites: Behav Brain Res. 2005 Mar 7;158(1):123-32 (medline /15680200)
COMMENTS: Cites: Psychopharmacology (Berl). 2005 Apr;179(1):54-67 (medline /15759151)
COMMENTS: Cites: Schizophr Res. 2005 Jun 1;75(1):27-34 (medline /15820321)
COMMENTS: Cites: Eur Arch Psychiatry Clin Neurosci. 2005 Oct;255(5):308-12 (medline /15834758)
COMMENTS: Cites: Neuron. 2005 Jun 2;46(5):703-13 (medline /15924857)
COMMENTS: Cites: J Neurosci. 2005 Jun 1;25(22):5351-5 (medline /15930383)
COMMENTS: Cites: Neurosci Biobehav Rev. 2005;29(6):977-88 (medline /15964074)
COMMENTS: Cites: Psychopharmacology (Berl). 2005 Sep;181(3):415-36 (medline /16001126)
COMMENTS: Cites: Learn Mem. 2005 Jul-Aug;12(4):375-82 (medline /16027176)
ABSTRACT: Dysregulated glutamatergic neurotransmission has been strongly implicated in the pathophysiology of schizophrenia (SCZ). Recently, presynaptic modulation of glutamate transmission has been shown to have therapeutic promise. We asked whether genetic knockdown of glutaminase (gene GLS1) to reduce glutamatergic transmission presynaptically by slowing the recycling of glutamine to glutamate, would produce a phenotype relevant to SCZ and its treatment. GLS1 heterozygous (GLS1 het) mice showed about a 50% global reduction in glutaminase activity, and a modest reduction in glutamate levels in brain regions relevant to SCZ pathophysiology, but displayed neither general behavioral abnormalities nor SCZ-associated phenotypes. Functional imaging, measuring regional cerebral blood volume, showed hippocampal hypometabolism mainly in the CA1 subregion and subiculum, the inverse of recent clinical imaging findings in prodromal and SCZ patients. GLS1 het mice were less sensitive to the behavioral stimulating effects of amphetamine, showed a reduction in amphetamine-induced striatal dopamine release and in ketamine-induced frontal cortical activation, suggesting that GLS1 het mice are resistant to the effects of these pro-psychotic challenges. Moreover, GLS1 het mice showed clozapine-like potentiation of latent inhibition, suggesting that reduction in glutaminase has antipsychotic-like properties. These observations provide further support for the pivotal role of altered glutamatergic synaptic transmission in the pathophysiology of SCZ, and suggest that presynaptic modulation of the glutamine-glutamate pathway through glutaminase inhibition may provide a new direction for the pharmacotherapy of SCZ.
MESH HEADINGS: Acoustic Stimulation/adverse effects
MESH HEADINGS: Amphetamine/pharmacology
MESH HEADINGS: Analysis of Variance
MESH HEADINGS: Animals
MESH HEADINGS: Antipsychotic Agents/*pharmacology
MESH HEADINGS: Behavior, Animal/physiology
MESH HEADINGS: Central Nervous System Stimulants/pharmacology
MESH HEADINGS: Clozapine/pharmacology
MESH HEADINGS: Excitatory Amino Acid Antagonists/pharmacology
MESH HEADINGS: Excitatory Postsynaptic Potentials/drug effects/genetics
MESH HEADINGS: Exploratory Behavior/drug effects/physiology
MESH HEADINGS: Freezing Reaction, Cataleptic/drug effects/physiology
MESH HEADINGS: Glutamic Acid/metabolism
MESH HEADINGS: Glutaminase/*deficiency/metabolism
MESH HEADINGS: Hippocampus/blood supply/*drug effects/*metabolism
MESH HEADINGS: Image Processing, Computer-Assisted/methods
MESH HEADINGS: *Inhibition (Psychology)
MESH HEADINGS: Ketamine/pharmacology
MESH HEADINGS: Magnetic Resonance Imaging/methods
MESH HEADINGS: Magnetic Resonance Spectroscopy/methods
MESH HEADINGS: Maze Learning/drug effects/physiology
MESH HEADINGS: Memory, Short-Term/drug effects/physiology
MESH HEADINGS: Mice
MESH HEADINGS: Mice, Inbred C57BL
MESH HEADINGS: Mice, Knockout
MESH HEADINGS: Microdialysis/methods
MESH HEADINGS: Motor Activity/drug effects
MESH HEADINGS: Oxygen/blood
MESH HEADINGS: Protons/diagnostic use
MESH HEADINGS: Startle Reaction/drug effects/genetics
MESH HEADINGS: Synaptic Transmission/*drug effects/genetics eng

451. Galea, K. S.; Maccalman, L.; Jones, K.; Cocker, J.; Teedon, P.; Sleeuwenhoek, A. J.; Cherrie, J. W., and Van Tongeren, M. Biological Monitoring of Pesticide Exposures in Residents Living Near Agricultural Land.


Rec #: 74859
Keywords: HUMAN HEALTH
Notes: Chemical of Concern: CPY
Abstract: ABSTRACT: BACKGROUND: There is currently a lack of reliable information on the exposures of residents and bystanders to pesticides in the UK. Previous research has shown that the methods currently used for assessing pesticide exposure for regulatory purposes are appropriate for farm workers 1. However, there were indications that the exposures of bystanders may sometimes be underestimated. The previous study did not collect data for residents. Therefore, this study aims to collect measurements to determine if the current methods and tools are appropriate for assessing pesticide exposure for residents living near agricultural fields.
ABSTRACT: METHODS/DESIGN: The study will recruit owners of farms and orchards (hereafter both will be referred to as farms) that spray their agricultural crops with certain specified pesticides, and which have residential areas in close proximity to these fields. Recruited farms will be asked to provide details of their pesticide usage throughout the spray season. Informed consenting residents (adults (18 years and over) and children (aged 4-12 years)) will be asked to provide urine samples and accompanying activity diaries during the spraying season and in addition for a limited number of weeks before/after the spray season to allow background pesticide metabolite levels to be determined. Selected urine samples will be analysed for the pesticide metabolites of interest. Statistical analysis and mathematical modelling will use the laboratory results, along with the additional data collected from the farmers and residents, to determine systemic exposure levels amongst residents. Surveys will be carried out in selected areas of the United Kingdom over two years (2011 and 2012), covering two spraying seasons and the time between the spraying seasons.
ABSTRACT: DISCUSSION: The described study protocol was implemented for the sample and data collection procedures carried out in 2011. Based on experience to date, no major changes to the protocol are anticipated for the 2012 spray season although the pesticides and regional areas for inclusion in 2012 are still to be confirmed.
MESH HEADINGS: Adolescent
MESH HEADINGS: Adult
MESH HEADINGS: Agriculture/*methods
MESH HEADINGS: Aminoimidazole Carboxamide/analogs &
MESH HEADINGS: derivatives/urine
MESH HEADINGS: Captan/urine
MESH HEADINGS: Child
MESH HEADINGS: Child, Preschool
MESH HEADINGS: Chlormequat/urine
MESH HEADINGS: Chlorpyrifos/urine
MESH HEADINGS: Diquat/urine
MESH HEADINGS: Environmental Exposure/*analysis
MESH HEADINGS: Environmental Monitoring/methods
MESH HEADINGS: Humans
MESH HEADINGS: Hydantoins/urine
MESH HEADINGS: Nitriles/urine
MESH HEADINGS: Pesticides/*urine
MESH HEADINGS: Pyrethrins/urine
MESH HEADINGS: Risk Assessment
MESH HEADINGS: Seasons
MESH HEADINGS: Thiophanate/urine
MESH HEADINGS: Triazoles/urine eng

452. Gao, L.; Mcbeath, R., and Chen, C. S. Stem Cell Shape Regulates a Chondrogenic Versus Myogenic Fate Through Rac1 and N-Cadherin.


Rec #: 50599
Keywords: HUMAN HEALTH
Notes: Chemical of Concern: CPY
Abstract: COMMENTS: Cites: Mol Cell Biol. 2009 Feb;29(4):953-64 (medline /19075000)
COMMENTS: Cites: Invest Ophthalmol Vis Sci. 2000 Jan;41(1):89-95 (medline /10634606)
COMMENTS: Cites: J Biol Chem. 2007 Aug 10;282(32):23500-8 (medline /17573353)
COMMENTS: Cites: Exp Cell Res. 2007 Aug 15;313(14):3066-75 (medline /17524393)
COMMENTS: Cites: Mol Biol Cell. 2007 May;18(5):1734-43 (medline /17332503)
COMMENTS: Cites: J Cell Sci. 2006 Dec 1;119(Pt 23):4994-5005 (medline /17105765)
COMMENTS: Cites: Science. 2006 Oct 13;314(5797):298-300 (medline /17038622)
COMMENTS: Cites: Curr Biol. 2006 Sep 5;16(17):1685-93 (medline /16950104)
COMMENTS: Cites: Cell. 2006 Aug 25;126(4):677-89 (medline /16923388)
COMMENTS: Cites: J Cell Biol. 2006 Jul 17;174(2):277-88 (medline /16847103)
COMMENTS: Cites: Mol Biol Cell. 2006 Feb;17(2):749-59 (medline /16291866)
COMMENTS: Cites: EMBO J. 1999 Feb 1;18(3):578-85 (medline /9927417)
COMMENTS: Cites: Science. 1999 Apr 2;284(5411):143-7 (medline /10102814)
COMMENTS: Cites: Tissue Eng. 1998 Winter;4(4):415-28 (medline /9916173)
COMMENTS: Cites: J Bone Joint Surg Am. 1998 Dec;80(12):1745-57 (medline /9875932)
COMMENTS: Cites: Exp Cell Res. 1998 Jan 10;238(1):265-72 (medline /9457080)
COMMENTS: Cites: J Cell Biol. 1997 Nov 17;139(4):1047-59 (medline /9362522)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):849-54 (medline /9023345)
COMMENTS: Cites: Science. 1997 May 30;276(5317):1425-8 (medline /9162012)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12378-82 (medline /7528920)
COMMENTS: Cites: Cell Adhes Commun. 1994 Dec;2(6):521-37 (medline /7743138)
COMMENTS: Cites: Development. 1994 Jan;120(1):177-87 (medline /8119125)
COMMENTS: Cites: Trends Genet. 1993 Sep;9(9):317-21 (medline /8236461)
COMMENTS: Cites: Neuron. 1993 Oct;11(4):551-64 (medline /8398146)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1988 Aug;85(15):5576-80 (medline /2456572)
COMMENTS: Cites: Cell. 1983 Dec;35(3 Pt 2):657-66 (medline /6686086)
COMMENTS: Cites: Cell. 1978 Dec;15(4):1313-21 (medline /729001)
COMMENTS: Cites: Nature. 1978 Jun 1;273(5661):345-9 (medline /661946)
COMMENTS: Cites: Mol Biol Cell. 2004 Jun;15(6):2943-53 (medline /15075376)
COMMENTS: Cites: Dev Cell. 2004 Apr;6(4):483-95 (medline /15068789)
COMMENTS: Cites: Nature. 2003 Oct 9;425(6958):577-84 (medline /14534577)
COMMENTS: Cites: J Clin Pathol. 2003 Aug;56(8):619-21 (medline /12890815)
COMMENTS: Cites: Biochem Biophys Res Commun. 2003 Jul 25;307(2):355-61 (medline /12859964)
COMMENTS: Cites: Cell. 2003 Apr 18;113(2):147-58 (medline /12705864)
COMMENTS: Cites: J Biol Chem. 2003 Apr 4;278(14):12384-9 (medline /12531888)
COMMENTS: Cites: Nature. 2002 Dec 12;420(6916):629-35 (medline /12478284)
COMMENTS: Cites: Cancer Cell. 2002 Oct;2(4):301-14 (medline /12398894)
COMMENTS: Cites: J Cell Biol. 2002 Sep 2;158(5):953-65 (medline /12213839)
COMMENTS: Cites: Exp Cell Res. 2002 Aug 1;278(1):72-83 (medline /12126959)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1972-7 (medline /11842191)
COMMENTS: Cites: J Biol Chem. 2001 Nov 23;276(47):43879-86 (medline /11571292)
COMMENTS: Cites: J Cell Sci. 2001 May;114(Pt 10):1829-38 (medline /11329369)
COMMENTS: Cites: Mol Biol Cell. 2000 Nov;11(11):3703-21 (medline /11071901)
COMMENTS: Cites: J Bone Miner Res. 2000 Feb;15(2):198-208 (medline /10703921)
COMMENTS: Cites: Stem Cells. 2008 Nov;26(11):2921-7 (medline /18703661)
ABSTRACT: Human mesenchymal stem cells (hMSCs) are multipotent cells that can differentiate into many cell types. Chondrogenesis is induced in hMSCs cultured as a micromass pellet to mimic cellular condensation during cartilage development, and exposed to transforming growth factor beta (TGFbeta). Interestingly, TGFbeta can also induce hMSC differentiation to smooth-muscle-like cell types, but it remains unclear what directs commitment between these two lineages. Our previous work revealed that cell shape regulates hMSC commitment between osteoblasts and adipocytes through RhoA signaling. Here we show that cell shape also confers a switch between chondrogenic and smooth muscle cell (SMC) fates. Adherent and well-spread hMSCs stimulated with TGF beta 3 upregulated SMC genes, whereas cells allowed to attach onto micropatterned substrates, but prevented from spreading and flattening, upregulated chondrogenic genes. Interestingly, cells undergoing SMC differentiation exhibited little change in RhoA, but significantly higher Rac1 activity than chondrogenic cells. Rac1 activation inhibited chondrogenesis and was necessary and sufficient for inducing SMC differentiation. Furthermore, TGF beta 3 and Rac1 signaling upregulated N-cadherin, which was required for SMC differentiation. These results demonstrate a chondrogenic-SMC fate decision mediated by cell shape, Rac1, and N-cadherin, and highlight the tight coupling between lineage commitment and the many changes in cell shape, cell-matrix adhesion, and cell-cell adhesion that occur during morphogenesis.
MESH HEADINGS: Antigens, CD/drug effects/genetics/*metabolism
MESH HEADINGS: Cadherins/drug effects/genetics/*metabolism
MESH HEADINGS: Cell Adhesion/drug effects/genetics
MESH HEADINGS: Cell Differentiation/drug effects/genetics
MESH HEADINGS: Cell Lineage/drug effects/*physiology
MESH HEADINGS: Cell Shape/drug effects/*physiology
MESH HEADINGS: Cells, Cultured
MESH HEADINGS: Chondrocytes/cytology/drug effects/*metabolism
MESH HEADINGS: Chondrogenesis/drug effects/physiology
MESH HEADINGS: Extracellular Matrix/metabolism
MESH HEADINGS: Gene Expression Regulation/drug effects/physiology
MESH HEADINGS: Humans
MESH HEADINGS: Mesenchymal Stromal Cells/cytology/drug effects/*metabolism
MESH HEADINGS: Muscle Development/drug effects/physiology
MESH HEADINGS: Myocytes, Smooth Muscle/cytology/drug effects/*metabolism
MESH HEADINGS: Transforming Growth Factor beta3/metabolism/pharmacology
MESH HEADINGS: Up-Regulation/drug effects/genetics
MESH HEADINGS: rac1 GTP-Binding Protein/drug effects/genetics/*metabolism eng

453. Gao, Y.; Chen, S.; Hu, M.; Hu, Q.; Luo, J., and Li, Y. Purification and Characterization of a Novel Chlorpyrifos Hydrolase From Cladosporium Cladosporioides Hu-01.


Rec #: 73279
Keywords: HUMAN HEALTH
Notes: Chemical of Concern: CPY
Abstract: ABSTRACT: Chlorpyrifos is of great environmental concern due to its widespread use in the past several decades and its potential toxic effects on human health. Thus, the degradation study of chlorpyrifos has become increasing important in recent years. A fungus capable of using chlorpyrifos as the sole carbon source was isolated from organophosphate-contaminated soil and characterized as Cladosporium cladosporioides Hu-01 (collection number: CCTCC M 20711). A novel chlorpyrifos hydrolase from cell extract was purified 35.6-fold to apparent homogeneity with 38.5% overall recovery by ammoniumsulfate precipitation, gel filtration chromatography and anion-exchange chromatography. It is a monomeric structure with a molecular mass of 38.3 kDa. The pI value was estimated to be 5.2. The optimal pH and temperature of the purified enzyme were 6.5 and 40°C, respectively. No cofactors were required for the chlorpyrifos-hydrolysis activity. The enzyme was strongly inhibited by Hg²⁺, Fe³⁺, DTT, β-mercaptoethanol and SDS, whereas slight inhibitory effects (5-10% inhibition) were observed in the presence of Mn²⁺, Zn²⁺, Cu²⁺, Mg²⁺, and EDTA. The purified enzyme hydrolyzed various organophosphorus insecticides with P-O and P-S bond. Chlorpyrifos was the preferred substrate. The Km and Vmax values of the enzyme for chlorpyrifos were 6.7974 μM and 2.6473 μmol·min⁻¹, respectively. Both NH2-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometer (MALDI-TOF-MS) identified an amino acid sequence MEPDGELSALTQGANS, which shared no similarity with any reported organophosphate-hydrolyzing enzymes. These results suggested that the purified enzyme was a novel hydrolase and might conceivably be developed to fulfill the practical requirements to enable its use in situ for detoxification of chlorpyrifos. Finally, this is the first described chlorpyrifos hydrolase from fungus.
MESH HEADINGS: Chlorpyrifos/*metabolism
MESH HEADINGS: Cladosporium/*enzymology
MESH HEADINGS: Fungal Proteins/*isolation &
MESH HEADINGS: purification/*metabolism
MESH HEADINGS: Hydrolases/*isolation &
MESH HEADINGS: purification/*metabolism eng

454. Garabrant, David H; Aylward, Lesa L; Berent, Stanley; Chen, Qixuan; Timchalk, Charles; Burns, Carol J; Hays, Sean M, and Albers, James W. Cholinesterase Inhibition in Chlorpyrifos Workers: Characterization of Biomarkers of Exposure and Response in Relation to Urinary Tcpy. 2009 Nov; 19, (7): 634-42.


Rec #: 40919
Keywords: HUMAN HEALTH
Notes: Chemical of Concern: CPY
Abstract: Abstract: The objective of this study was to evaluate the quantitative relation between measured red blood cell acetylcholinesterase (RBC AChE) and plasma butyrylcholinesterase (BuChE) activities with exposure to chlorpyrifos (CPF) as assessed by measurement of urinary 3,5,6-trichloro-2-pyridinol (TCPy) in a study group of workers occupationally exposed in the manufacture of CPF and a referent group of chemical manufacturing workers. Measures of plasma BuChE and RBC AChE activity and urinary TCPy concentration collected over a year-long study (1999-2000) in CPF-exposed workers (n=53) and referents (n=60) were analyzed using linear mixed models to characterize exposure-response relationships. Intraindividual variability in cholinesterase measures was compared between CPF-exposed workers and referents. Urinary TCPy concentrations in CPF workers were substantially elevated compared to referents, with median and 95th percentile concentrations during typical employment conditions 10-fold and more than 30-fold higher, respectively, than corresponding measures in the referents. Intraindividual variability in cholinesterase activities was substantial, with 17% of unexposed referents experiencing one or more plasma BuChE measures more than 20% below baseline over a year of repeated, periodic measurements. RBC AChE activity, an early biomarker of effect, was unrelated to urinary TCPy concentration over the entire range of exposure, up to 1000 microg TCPy/g creatinine (Cr). Plasma BuChE activity, a non-adverse biomarker of exposure, was negatively related to urinary TCPy concentrations above approximately 110 microg TCPy/g Cr. No-effect levels for inhibition of plasma BuChE and RBC AChE corresponding to absorbed doses of CPF of approximately 5 and greater than 50 microg/kg/day, respectively, were identified. These findings are consistent with previous no-effect level determinations for ChE inhibition in humans and suggest that general population CPF exposure levels are substantially below the identified no-effect levels. The dose-response relationships observed in this study are consistent with predictions from the previously published physiologically based pharmacokinetic/pharmacodynamic model for CPF. Intraindividual variability in measured cholinesterase activities in referents was substantial, suggesting that ongoing monitoring programs may have a substantial rate of false positives.
Keywords: Pyridones -- urine
Keywords: Cholinesterases
Keywords: Humans
Keywords: Butyrylcholinesterase
Keywords: Workplace
Keywords: Insecticides -- urine
Keywords: Environmental Studies
Keywords: Risk Assessment
Keywords: 3,5,6-trichloro-2-pyridinol
Keywords: Cholinesterase Inhibitors -- toxicity
Keywords: Insecticides
Keywords: Pyridones
Keywords: Adult
Keywords: Cholinesterase Inhibitors -- pharmacokinetics
Keywords: Chemical Industry
Keywords: Male
Keywords: Chlorpyrifos -- pharmacokinetics
Keywords: Butyrylcholinesterase -- blood
Keywords: Chlorpyrifos -- urine
Keywords: Insecticides -- toxicity
Keywords: Cholinesterases -- blood
Keywords: Dose-Response Relationship, Drug
Keywords: Cholinesterase Inhibitors -- urine
Keywords: Cholinesterase Inhibitors -- blood
Keywords: Chlorpyrifos
Keywords: Cholinesterase Inhibitors
Keywords: Chlorpyrifos -- toxicity
Keywords: Insecticides -- pharmacokinetics
Keywords: Occupational Exposure -- adverse effects
Keywords: Middle Aged
Keywords: Occupational Exposure -- analysis
Keywords: Biological Markers
Keywords: Biological Markers -- urine
Keywords: Female
Copyright - Copyright Nature Publishing Group Nov 2009
Language of summary - English
Pages - 634-42
ProQuest ID - 219569578
Last updated - 2012-11-20
Place of publication - Tuxedo
Corporate institution author - Garabrant, David H; Aylward, Lesa L; Berent, Stanley; Chen, Qixuan; Timchalk, Charles; Burns, Carol J; Hays, Sean M; Albers, James W
DOI - 1882471191; 49050531; 68909; ENNP; 18716607; NTPGENNPjes200851 English

455. Garc+ˇa de Llasera, Martha P. and Reyes-Reyes, Mar+ a L. A validated matrix solid-phase dispersion method for the extraction of organophosphorus pesticides from bovine samples. 2009 Jun 15-; 114, (4): 1510-1516.


Rec #: 4420
Keywords: SURVEY
Notes: Chemical of Concern: CPY
Abstract: A method based on matrix solid-phase dispersion (MSPD) was developed for the quantitative extraction of five organophosphorus (OPPs) pesticides from bovine samples. The determination was carried out by high performance liquid chromatography (HPLC) with diode array spectrophotometric UV detection. The MSPD extraction with octadecylsilyl (C18) sorbent combined with a silica gel clean-up and acetonitrile elution was optimised for chlorpyrifos, chlorfenvinphos, diazinon, fenitrothion, and parathion-methyl. The method was validated, yielding recovery values higher than 94%, except for chlorfenvinphos in liver (55%), and precision values, expressed as relative standard deviations (RSDs), which were less than or equal to 15% in liver and 11.5% in muscle at spiking levels of 0.25, 2.5 and 5 ++g gęĆ1. Linearity was studied from 0.5 to 15 ++g gęĆ1, and the limits of detection (LODs) were found to be lower than 0.1 ++g gęĆ1. This method was applied to the analysis of real samples with confirmative analyses performed using gas chromatographyÇômass spectrometry (GCÇôMS) in selected ion monitoring mode (SIM). Matrix solid-phase dispersion/ Extraction/ HPLC analysis/ Organophosphorus pesticides/ Bovine samples

456. García-Rodríguez, D.; Carro-Díaz, A. M.; Lorenzo-Ferreira, R. A., and Cela-Torrijos, R. Determination of pesticides in seaweeds by pressurized liquid extraction and programmed temperature vaporization-based large volume injection-gas chromatography-tandem mass spectrometry. 2010; 1217, (17): 2940-2949.


Rec #: 52899
Keywords: CHEM METHODS
Notes: Chemical of Concern: CPY
Abstract: Abstract: A rapid method for the simultaneous identification and quantification of pesticide residues in edible seaweed has been developed. Target analytes were three pyrethroid, a carbamate and two organophosphorus pesticides. The procedure consists of a pressurized liquid extraction (PLE) with integrated clean-up, followed by gas chromatography coupled to tandem mass spectrometry. Five PLE parameters were investigated using a screening design: temperature, static extraction time, number of cycles, percent of flush volume and quantitative composition of the n-hexane/ethyl acetate extraction solvent. The effect of the in-cell clean-up with Florisil® and graphitized carbon black adsorbents was investigated using a Doehlert response surface design. Large volumes of sample extracts were injected using a programmed-temperature vaporizer (PTV-LVI) to improve both sensitivity and selectivity of measurements. Quantification was carried by the internal standard method with surrogate deuterated standards. The method showed excellent linearity (R ² >0.999) and precision (relative standard deviation, RSD≤8%) for all compounds, with detection limits ranging from 0.3pgg⁻¹ for chlorpyrifos-ethyl, to 3.0pgg⁻¹ for carbaryl (23.1pgg⁻¹ for deltamethrin). Recoveries in real seaweed samples were within the range 82-108%. The method was satisfactory validated for the analysis of wild and cultivated edible seaweeds. The presence of pyrethroid and organophosphorus pesticides in some of the samples was evidenced.
Keywords: pressurized liquid extraction
Amsterdam; New York: Elsevier

457. Garcia-Cambero, J. P.; Catala, M., and Valcarcel, Y. River waters induced neurotoxicity in an embryo-larval zebrafish model. 2012; 84, 84-91.


Rec #: 60419
Keywords: EFFLUENT
Notes: Chemical of Concern: CPY
Abstract: Abstract: Some investigations have revealed an increased release of psychoactive drugs into the aquatic environments near big cities. However, despite the alert generated by the presence of such neurotoxic compounds, there is a lack of studies evaluating the impact on living organisms. One solution consists in the development of bioassays able to address specific risks, such as neurotoxicity, but on the other hand suitable to assess complex matrices like river samples.
1   ...   72   73   74   75   76   77   78   79   ...   151


The database is protected by copyright ©dentisty.org 2016
send message

    Main page