Appendix 2-5: Rejected ecotox bibliography for Chlorpyrifos



Download 6.25 Mb.
Page45/151
Date conversion04.02.2017
Size6.25 Mb.
1   ...   41   42   43   44   45   46   47   48   ...   151
Papers that were Excluded from the May 2013 Refresh
1. Insecticides, Testosterone, and Fertility.
Rec #: 79829
Keywords: HUMAN HEALTH
Notes: Chemical of Concern: CPY
Abstract: MESH HEADINGS: Chlorpyrifos/adverse effects/pharmacology
MESH HEADINGS: Fertility/*drug effects
MESH HEADINGS: Humans
MESH HEADINGS: Insecticides/*adverse effects
MESH HEADINGS: Male
MESH HEADINGS: Testosterone/*metabolism eng

2. Abass, K.; Reponen, P.; Mattila, S., and Pelkonen, O. Metabolism of carbosulfan. I. Species differences in the in vitro biotransformation by mammalian hepatic microsomes including human. 2009; 181, (2): 210-219.


Rec #: 55069
Keywords: IN VITRO
Notes: Chemical of Concern: CPY
Abstract: Abstract: The in vitro metabolism of carbosulfan, a widely used carbamate insecticide, by hepatic microsomes from human, rat, mouse, dog, rabbit, minipig, and monkey was studied. Altogether eight (8) phase I metabolites were detected by LC-MS; phase II metabolites were not found in human homogenates fortified with appropriate cofactors. The primary metabolic pathways were the initial oxidation of sulfur to carbosulfan sulfinamide ('sulfur oxidation pathway') and the cleavage of the nitrogen sulfur bond (N-S) to give carbofuran and dibutylamine ('carbofuran pathway'). Carbofuran was further hydroxylated to 3-hydroxycarbofuran and/or 7-phenolcarbofuran, which were further oxidized to 3-ketocarbofuran or 3-hydroxy-7-phenolcarbofuran, respectively, and finally to 3-keto-7-phenolcarbofuran. 3-Hydroxycarbofuran was the main metabolite in all species, but otherwise there were some qualitative interspecies differences in carbofuran pathway metabolites. Only rabbit liver microsomes were able to metabolize carbofuran via hydroxylation to 7-phenolcarbofuran. Carbofuran was not detected in dog liver microsomes due to rapid further metabolism. In general, liver microsomes from all seven species produced more toxic products (carbofuran, 3-hydroxy-carbofuran, 3-ketocarbofuran) more rapidly than a detoxification product (carbosulfan sulfinamide). Differences in intrinsic hepatic clearances (CL(int)) between the lowest and highest species were moderate; 2-fold for the carbofuran pathway, 2.7-fold for carbosulfan sulfinamide and 6.2-fold for dibutylamine. Our studies, although restricted to in vitro metabolic data from human and animal hepatic preparations, provide valuable quantitative carbosulfan-specific data for risk assessment, which suggest that interspecies differences, for carbosulfan active chemical moiety, in toxicokinetics are within the standard applied factor for species extrapolation in toxicokinetics. These results will be valuable in further defining the risks associated with exposure to carbosulfan. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Keywords: Pesticides, Toxicokinetics, P450, In vitro, Metabolism, Risk assessment
ISI Document Delivery No.: 499IO

3. Abass, K.; Reponen, P.; Mattila, S., and Pelkonen, O. Metabolism of carbosulfan II. Human interindividual variability in its in vitro hepatic biotransformation and the identification of the cytochrome P450 isoforms involved. 2010; 185, (3): 163-173.


Rec #: 55079
Keywords: HUMAN HEALTH
Notes: Chemical of Concern: CPY
Abstract: Abstract: This study aims to characterize interindividual variability and individual CYP enzymes involved in the in vitro metabolism of the carbamate insecticide carbosulfan. Microsomes from ten human livers (HLM) were used to characterize the interindividual variability in carbosulfan activation. Altogether eight phase I metabolites were analyzed by LC-MS. The primary metabolic pathways were detoxification by the initial oxidation of sulfur to carbosulfan sulfinamide ('sulfur oxidation pathway') and activation via cleavage of the nitrogen sulfur bond (N-S) to give carbofuran and dibutylamine ('carbofuran pathway'). Differences between maximum and minimum carbosulfan activation values with HLM indicated nearly 5.9-, 7.0, and 6.6-fold variability in the k(m), V(max) and CL(int) values, respectively. CYP3A5 and CYP2B6 had the greatest efficiency to form carbosulfan sulfinamide, while CYP3A4 and CYP3A5 were the most efficient in the generation of the carbofuran metabolic pathway. Based on average abundances of CYP enzymes in human liver, CYP3A4 contributed to 98% of carbosulfan activation, while CYP3A4 and CYP2B6 contributed 57 and 37% to detoxification, respectively. Significant correlations between carbosulfan activation and CYP marker activities were seen with CYP3A4 (omeprazole sulfoxidation), CYP2C19 (omeprazole 5-hydroxylation) and CYP3A4 (midazolam 1'-hydroxylation), displaying r(2) = 0.96, 0.87 and 0.82, respectively. Activation and detoxification pathways were inhibited by ketoconazole, a specific CYP3A4 inhibitor, by 90-97% and 47-94%, respectively. Carbosulfan inhibited relatively potently CYP3A4 and moderately CYP1A1/2 and CYP2C19 in pooled HLM. These results suggest that the carbosulfan activation pathway is more important than the detoxification pathway, and that carbosulfan activation is predominantly catalyzed in humans by CYP3A4. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Keywords: Pesticides, Xenobiotic, Risk assessment, In vitro metabolism, P450,
ISI Document Delivery No.: 602WM

4. Abass, K.; Turpeinen, M., and Pelkonen, O. An evaluation of the cytochrome P450 inhibition potential of selected pesticides in human hepatic microsomes. 2009; 44, (6): 553-563.


Rec #: 55099
Keywords: HUMAN HEALTH
Notes: Chemical of Concern: CPY
Abstract: Abstract: The goal of this work was to study the ability of 18 pesticides to inhibit selective model activities for all major xenobiotic-metabolizing enzymes, namely CYP1A1/2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4. Generally organophosphorus insecticides were the most potent and extensive inhibitors, especially towards CYP1A1/2 (IC(50) values of chlorpyrifos, fenitrothion and profenofos similar to 3 mu M), CYP2B6 (IC(50) values of chlorpyrifos and fenitrothion 2.5 mu M), CYP2C8 (fenitrothion 4.3 mu M), CYP2C9 (fenitrothion and malathion 4.8 and 2.5 mu M, respectively), CYP2D6 (chlorpyrifos and phenthoate similar to 3 mu M) and CYP3A4 (chlorpyrifos, fenitrothion and phenthoate 3-4 mu M). Otherwise there were quite considerable differences in potency and extent of inhibition between different organophosphates. Pyrethroids were in general very weak or inactive. Deltamethrin and fenvalerate were potent inhibitors of CYP2D6 (IC(50) values of similar to 3 mu M) while lambda-cyhalothrin potently inhibited both CYP2D6 and CYP3A4-mediated activities (IC(50)'s about 3-4 mu M). Some pesticides caused relatively potent inhibitions sporadically (carbendazim, CYP2D6, IC(50) = 12 mu M; atrazine, CYP3A4, IC(50) = 2.8 mu M; glyphosate, CYP2C9, IC(50) = 3.7 mu M; hexaflumuron, IC(50) = 6.0 mu M). With the exceptions of alpha-cypermethrin, cypermethrin, isoproturon, carbaryl and abamectin, most pesticides inhibited relatively potently at least one CYP-selective activity, which may have relevance for potential interactions in occupational exposures and for further studies on the CYP-associated metabolism of respective pesticides.
Keywords: Pesticides, inhibitory interactions, P450, human liver microsomes, in
ISI Document Delivery No.: 535VX

5. Abass, Khaled and Pelkonen, Olavi. The inhibition of major human hepatic cytochrome P450 enzymes by 18 pesticides: Comparison of the N-in-one and single substrate approaches. (0).


Rec #: 5310
Keywords: HUMAN HEALTH
Notes: Chemical of Concern: CPY
Abstract: In the present study on human hepatic microsomes, the N-in-one assay with ten probe substrates for nine cytochrome-P450 enzymes (CYPs) was compared with the single substrate assays to investigate pesticidesÇôCYP interactions. CYP inhibition was measured by liquid chromatographyÇôtandem mass spectrometry (LC/MSÇôMS). As illustrated by the initial screening at 100 ++M concentration of 18 pesticides, CYPs are more sensitive to organophosphates (OPs) than to other pesticide groups. Chlorpyrifos and fenitrothion were most effective in inhibiting CYP1A1/2, and CYP2B6. Profenofos was also inhibitory towards multiple CYPs. Pyrethroids, e.g. deltamethrin, fenvalerate and lambda-cyhalothrin, potently inhibited CYP2D6. CYP3A4 activity was moderately inhibited by fenvalerate and potently by alpha-cypermethrin. The correlations between IC50 values obtained from the N-in-one and single substrate approaches were highly significant for CYP2Cs (r2 = 0.94), CYP3A4, omeprazole-sulfoxidation, (r2 = 0.89), followed by CYP1A2 and CYP2B6 (r2 = 0.82), and CYP2D6 (r2 = 0.80). In contrast no correlation was observed with CYP2E1 and CYP3A4 (midazolam-1Ç_-hydroxylation). The N-in-one screening assay seems useful and reliable for most CYP activities when a comprehensive and quick evaluation of potential interactions with CYPs is needed. However, at the present moment, it does not enable discrimination on the basis of mechanism of inhibition. A strict comparison between single and N-in-one assays is a prerequisite for more extensive routine use. Pesticides/ Cytochrome P450/ Inhibitory interactions/ Human hepatic microsomes/ N-in-one assay/ Single substrate assay/ LCÇôMSÇôMS

6. Abdollahzadeh, Y.; Yamini, Y.; Jabbari, A.; Esrafili, A., and Rezaee, M. Application of ultrasound-assisted emulsification microextraction followed by gas chromatography for determination of organophosphorus pesticides in water and soil samples. 2012; 4, (3): 830-837.


Rec #: 55129
Keywords: CHEM METHODS
Notes: Chemical of Concern: CPY
Abstract: Abstract: In the present study a fast, simple and efficient method for determination of organophosphorus pesticides (OPPs) in water and soil samples was developed by using ultrasound assisted emulsification microextraction (USAEME) based on applying low density organic solvents. Fourteen microlitres of toluene was injected slowly into a 12 mL home-designed centrifuge glass vial containing an aqueous sample that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and 2 mL of separated toluene (about 4 mu L) was injected into a gas chromatographic instrument equipped with a flame ionization detector for analysis. Under the optimum conditions, preconcentration factors of 2390 and 1390 were obtained for diazinon and chlorpyrifos respectively. The method performance was studied in terms of linear dynamic range (LDRs from 0.01 mu g L(-1) to 100 mu g L(-1)), linearity (r(2) >= 0.9984), precision (repeatability < 8.7%), and extraction percentage (79.9 and 46.3%). Also, limits of detections of 0.01 and 0.1 mu g L(-1) were obtained for diazinon and chlorpyrifos respectively. The applicability of the USAEME method was evaluated by the extraction and determination of OPPs from some natural water and soil samples.
Keywords: POLYCYCLIC AROMATIC-HYDROCARBONS, LIQUID-PHASE MICROEXTRACTION,
ISI Document Delivery No.: 901RG

7. Abente, E. J. ; Sosnovtsev, S. V.; Bok, K., and Green, K. Y. Visualization of Feline Calicivirus Replication in Real-Time With Recombinant Viruses Engineered to Express Fluorescent Reporter Proteins.


Rec #: 50629
Keywords: NO TOXICANT
Notes: Chemical of Concern: CPY
Abstract: COMMENTS: Cites: PLoS Biol. 2004 Dec;2(12):e432 (medline /15562321)
COMMENTS: Cites: Virology. 2005 Mar 30;334(1):28-40 (medline /15749120)
COMMENTS: Cites: J Virol. 2005 Apr;79(7):4012-24 (medline /15767403)
COMMENTS: Cites: J Virol. 2005 Apr;79(8):4977-90 (medline /15795283)
COMMENTS: Cites: J Virol. 2005 Jul;79(13):8602-13 (medline /15956601)
COMMENTS: Cites: J Gen Virol. 2006 Feb;87(Pt 2):357-61 (medline /16432022)
COMMENTS: Cites: J Gen Virol. 2006 Apr;87(Pt 4):921-6 (medline /16528041)
COMMENTS: Cites: Virology. 2006 Jun 20;350(1):240-50 (medline /16574184)
COMMENTS: Cites: J Clin Microbiol. 2006 Apr;44(4):1405-12 (medline /16597869)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2006 May 23;103(21):8048-53 (medline /16702551)
COMMENTS: Cites: J Clin Microbiol. 2006 Jun;44(6):2271-5 (medline /16757638)
COMMENTS: Cites: J Virol. 1991 Oct;65(10):5440-7 (medline /1716692)
COMMENTS: Cites: J Gen Virol. 2007 Feb;88(Pt 2):506-17 (medline /17251569)
COMMENTS: Cites: Vet Res. 2007 Mar-Apr;38(2):319-35 (medline /17296159)
COMMENTS: Cites: J Virol. 2007 May;81(10):5046-57 (medline /17329335)
COMMENTS: Cites: Virology. 2007 Jun 20;363(1):11-4 (medline /17434556)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11050-5 (medline /17581883)
COMMENTS: Cites: J Med Virol. 2007 Sep;79(9):1388-400 (medline /17607779)
COMMENTS: Cites: J Virol. 2007 Nov;81(22):12111-8 (medline /17855555)
COMMENTS: Cites: Virol J. 2007;4:115 (medline /17971212)
COMMENTS: Cites: J Gen Virol. 2007 Dec;88(Pt 12):3347-59 (medline /18024905)
COMMENTS: Cites: Clin Lab. 2007;53(9-12):567-70 (medline /18257462)
COMMENTS: Cites: Nat Rev Genet. 2008 Apr;9(4):267-76 (medline /18319742)
COMMENTS: Cites: J Virol. 2008 Jun;82(11):5408-16 (medline /18385231)
COMMENTS: Cites: Virology. 2008 Jul 5;376(2):390-6 (medline /18455748)
COMMENTS: Cites: Virology. 2008 Jul 20;377(1):117-23 (medline /18555887)
COMMENTS: Cites: J Virol. 2008 Oct;82(19):9306-17 (medline /18632864)
COMMENTS: Cites: Emerg Infect Dis. 2008 Aug;14(8):1224-31 (medline /18680645)
COMMENTS: Cites: J Virol. 2008 Oct;82(20):10088-101 (medline /18684830)
COMMENTS: Cites: J Virol. 2008 Nov;82(21):10519-31 (medline /18715913)
COMMENTS: Cites: J Med Virol. 2008 Nov;80(11):1997-2004 (medline /18814250)
COMMENTS: Cites: Virus Res. 2008 Dec;138(1-2):97-104 (medline /18824056)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16749-54 (medline /18922782)
COMMENTS: Cites: J Clin Virol. 2009 Jan;44(1):94-8 (medline /19062336)
COMMENTS: Cites: J Clin Virol. 2009 Jan;44(1):1-8 (medline /19084472)
COMMENTS: Cites: PLoS Pathog. 2009 Feb;5(2):e1000312 (medline /19247440)
COMMENTS: Cites: J Med Virol. 2009 May;81(5):922-32 (medline /19319938)
COMMENTS: Cites: J Virol. 2009 Sep;83(17):8587-95 (medline /19515767)
COMMENTS: Cites: Arch Virol. 1990;114(3-4):143-52 (medline /2241572)
COMMENTS: Cites: Nature. 1988 Mar 3;332(6159):81-2 (medline /2450279)
COMMENTS: Cites: Nature. 1989 Jun 1;339(6223):385-8, 340 (medline /2542797)
COMMENTS: Cites: J Virol. 1995 Aug;69(8):4797-806 (medline /7541843)
COMMENTS: Cites: Science. 1994 Sep 2;265(5177):1448-51 (medline /8073288)
COMMENTS: Cites: J Virol. 1994 Jun;68(6):3925-33 (medline /8189529)
COMMENTS: Cites: Curr Top Microbiol Immunol. 1996;204:27-48 (medline /8556868)
COMMENTS: Cites: EMBO J. 1997 Nov 17;16(22):6823-34 (medline /9362496)
COMMENTS: Cites: J Virol. 1998 Jan;72(1):20-31 (medline /9420196)
COMMENTS: Cites: J Virol. 1998 Apr;72(4):3051-9 (medline /9525628)
COMMENTS: Cites: J Gen Virol. 1997 Nov;78 ( Pt 11):3051-9 (medline /9367393)
COMMENTS: Cites: J Infect Dis. 2000 May;181 Suppl 2:S322-30 (medline /10804145)
COMMENTS: Cites: J Virol. 2000 Jul;74(14):6581-91 (medline /10864672)
COMMENTS: Cites: Virology. 2000 Nov 10;277(1):193-203 (medline /11062050)
COMMENTS: Cites: J Mol Biol. 2002 Jan 25;315(4):873-85 (medline /11812154)
COMMENTS: Cites: J Virol. 2002 Jun;76(12):6398-407 (medline /12021375)
COMMENTS: Cites: Arch Virol. 1975;48(4):317-25 (medline /1239254)
COMMENTS: Cites: Virus Res. 2003 Jul;94(1):1-10 (medline /12837551)
COMMENTS: Cites: J Am Vet Med Assoc. 2004 Jan 15;224(2):241-9 (medline /14736069)
COMMENTS: Cites: J Virol. 2004 May;78(9):4931-5 (medline /15078978)
COMMENTS: Cites: Virology. 2004 Sep 1;326(2):231-9 (medline /15302209)
COMMENTS: Cites: Vet Microbiol. 2006 Oct 5;117(1):14-8 (medline /16698199)
COMMENTS: Cites: Virology. 2006 Sep 30;353(2):463-73 (medline /16843517)
COMMENTS: Cites: Arch Virol. 1992;122(3-4):223-35 (medline /1731695)
COMMENTS: Cites: J Gen Virol. 2007 Aug;88(Pt 8):2091-100 (medline /17622609)
COMMENTS: Cites: J Med Virol. 2008 May;80(5):921-8 (medline /18360906)
COMMENTS: Cites: Vet Clin North Am Small Anim Pract. 2008 Jul;38(4):775-86, vii (medline /18501277)
COMMENTS: Cites: Arch Virol. 1989;108(1-2):69-79 (medline /2596975)
COMMENTS: Cites: Virus Res. 1988 Aug;11(1):59-72 (medline /3176687)
COMMENTS: Cites: Arch Gesamte Virusforsch. 1970;32(2):249-60 (medline /4100519)
COMMENTS: Cites: J Virol. 1972 Nov;10(5):1075-81 (medline /4117963)
COMMENTS: Cites: J Gen Virol. 1978 Nov;41(2):443-6 (medline /569187)
COMMENTS: Cites: Virology. 1978 Aug;89(1):318-21 (medline /687392)
COMMENTS: Cites: J Gen Virol. 1980 Mar;47(1):215-20 (medline /7365464)
COMMENTS: Cites: Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1406-10 (medline /7509072)
COMMENTS: Cites: Virology. 1995 Jul 10;210(2):383-90 (medline /7618275)
COMMENTS: Cites: J Mol Biol. 1994 Jul 15;240(3):256-64 (medline /8028008)
COMMENTS: Cites: Genetics. 1997 Mar;145(3):573-85 (medline /9055068)
COMMENTS: Cites: J Gen Virol. 1997 May;78 ( Pt 5):1033-40 (medline /9152420)
COMMENTS: Cites: J Virol. 1999 Aug;73(8):6626-33 (medline /10400760)
COMMENTS: Cites: Science. 1999 Oct 8;286(5438):287-90 (medline /10514371)
COMMENTS: Cites: J Vet Med Sci. 1999 Sep;61(9):1043-7 (medline /10535511)
COMMENTS: Cites: J Virol. 2000 Feb;74(3):1079-84 (medline /10627517)
COMMENTS: Cites: Arch Virol. 1999;144(12):2377-87 (medline /10664391)
COMMENTS: Cites: J Mol Biol. 2000 Mar 17;297(1):25-37 (medline /10704304)
COMMENTS: Cites: J Virol. 2000 May;74(10):4570-8 (medline /10775593)
COMMENTS: Cites: J Infect Dis. 2000 May;181 Suppl 2:S295-302 (medline /10804141)
COMMENTS: Cites: J Virol. 2001 Sep;75(17):8187-94 (medline /11483764)
COMMENTS: Cites: Nat Rev Mol Cell Biol. 2001 Nov;2(11):806-14 (medline /11715047)
COMMENTS: Cites: J Infect Dis. 2002 Jan 15;185(2):133-46 (medline /11807686)
COMMENTS: Cites: J Virol. 2002 Jul;76(14):7060-72 (medline /12072506)
COMMENTS: Cites: J Virol. 2002 Sep;76(17):8582-95 (medline /12163578)
COMMENTS: Cites: Arch Virol. 1975;48(3):213-28 (medline /1237279)
COMMENTS: Cites: J Struct Biol. 2003 Feb;141(2):143-8 (medline /12615540)
COMMENTS: Cites: Science. 2003 Mar 7;299(5612):1575-8 (medline /12624267)
COMMENTS: Cites: J Virol. 2003 May;77(10):5598-606 (medline /12719552)
COMMENTS: Cites: J Virol. 2003 Nov;77(21):11603-15 (medline /14557646)
COMMENTS: Cites: Ann N Y Acad Sci. 2003 Dec;1010:587-90 (medline /15033797)
COMMENTS: Cites: J Virol. 2004 Jul;78(14):7400-9 (medline /15220413)
ABSTRACT: Caliciviruses are non-enveloped, icosahedral viruses with a single-stranded, positive sense RNA genome. Transposon-mediated insertional mutagenesis was used to insert a transprimer sequence into random sites of an infectious full-length cDNA clone of the feline calicivirus (FCV) genome. A site in the LC gene (encoding the capsid leader protein) of the FCV genome was identified that could tolerate foreign insertions, and two viable recombinant FCV variants expressing LC fused either to AcGFP, or DsRedFP were recovered. The effects of the insertions on LC processing, RNA replication, and stability of the viral genome were analyzed, and the progression of a calicivirus single infection and co-infection were captured by real-time imaging fluorescent microscopy. The ability to engineer viable recombinant caliciviruses expressing foreign markers enables new approaches to investigate virus and host cell interactions, as well as studies of viral recombination, one of the driving forces of calicivirus evolution.
MESH HEADINGS: Animals
MESH HEADINGS: Base Sequence
MESH HEADINGS: Calicivirus, Feline/*genetics/*physiology
MESH HEADINGS: Capsid Proteins/genetics
MESH HEADINGS: Cats
MESH HEADINGS: Cell Line
MESH HEADINGS: DNA Primers/genetics
MESH HEADINGS: Gene Expression
MESH HEADINGS: Genes, Reporter
MESH HEADINGS: Genetic Engineering
MESH HEADINGS: Genome, Viral
MESH HEADINGS: Green Fluorescent Proteins/genetics
MESH HEADINGS: Host-Pathogen Interactions
MESH HEADINGS: Luminescent Proteins/genetics
MESH HEADINGS: Microscopy, Fluorescence
MESH HEADINGS: Mutagenesis, Insertional
MESH HEADINGS: Plasmids/genetics
MESH HEADINGS: RNA/genetics
MESH HEADINGS: RNA, Viral/genetics
MESH HEADINGS: Recombinant Fusion Proteins/genetics
MESH HEADINGS: Recombination, Genetic
MESH HEADINGS: Virus Replication eng

8. Acero, J L; Benitez, F J; Real, F J; Gonzalez, M, and Acero, J L. Chlorination of Organophosphorus Pesticides in Natural Waters. 2008 May 1; 153, (1-2): 320-328.


Rec #: 45999
Keywords: FATE
Notes: Chemical of Concern: CPY
Abstract: Abstract: Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 super(o)C and pH 7 were determined to be 110.9, 0.004 and 191.6M super(-) super(1)s super(-) super(1) for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5mg L super(-) super(1) was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety.
Keywords: Q5 01503:Characteristics, behavior and fate
Keywords: Disinfection
Keywords: Surface water
Keywords: Hypochlorous acid
Keywords: Byproducts
Keywords: Chlorine
Keywords: Water quality
Keywords: Freshwater
Keywords: Pollution Abstracts; Toxicology Abstracts; ASFA 3: Aquatic Pollution & Environmental Quality; Water Resources Abstracts
Keywords: Agricultural Chemicals
Keywords: Organophosphorus Pesticides
Keywords: SW 3060:Water treatment and distribution
Keywords: X 24330:Agrochemicals
Keywords: pH effects
Keywords: pH
Keywords: Temperature effects
Keywords: Pesticides (organophosphorus)
Keywords: P 2000:FRESHWATER POLLUTION
Keywords: Temperature
Keywords: Hydrogen Ion Concentration
Keywords: Water pollution
Keywords: Chlorpyrifos
Keywords: phosphorothioate
Keywords: Phosphates
Keywords: Phosphate
Keywords: Hazardous materials
Keywords: Trihalomethanes
Keywords: Pesticides
Keywords: Oxidation
Keywords: disinfection
Keywords: Chlorination
Keywords: Drinking water
Keywords: Diazinon
Date revised - 2008-07-01
Language of summary - English
Pages - 320-328
ProQuest ID - 19682771
SubjectsTermNotLitGenreText - Temperature effects; Hazardous materials; Pesticides; Chlorination; Water quality; pH effects; Water pollution; Pesticides (organophosphorus); Disinfection; Surface water; Hypochlorous acid; Chlorine; Chlorpyrifos; phosphorothioate; Phosphate; Trihalomethanes; Oxidation; Drinking water; Diazinon; Byproducts; Temperature; Phosphates; disinfection; pH; Organophosphorus Pesticides; Agricultural Chemicals; Hydrogen Ion Concentration; Freshwater
Last updated - 2011-12-14
British nursing index edition - Journal of Hazardous Materials [J. Hazard. Mater.]. Vol. 153, no. 1-2, pp. 320-328. 1 May 2008.
Corporate institution author - Acero, J L; Benitez, F J; Real, F J; Gonzalez, M
DOI - MD-0008217721; 8287717; CS0839743; 0304-3894 English

9. Adams, J. P.; Adeli, A.; Hsu, C. Y.; Harkess, R. L.; Page, G. P.; Depamphilis, C. W.; Schultz, E. B., and Yuceer, C. Poplar Maintains Zinc Homeostasis With Heavy Metal Genes Hma4 and Pcs1.


Rec #: 50129
Keywords: NO TOXICANT
Notes: Chemical of Concern: CPY
Abstract: COMMENTS: Cites: Plant Physiol. 2005 Mar;137(3):1082-91 (medline /15734913)
COMMENTS: Cites: Environ Pollut. 2005 Feb;133(3):541-51 (medline /15519729)
COMMENTS: Cites: New Phytol. 2005 Jul;167(1):73-80 (medline /15948831)
COMMENTS: Cites: Plant J. 2006 Jan;45(2):225-36 (medline /16367966)
COMMENTS: Cites: J Plant Physiol. 2006 Feb;163(3):319-32 (medline /16384624)
COMMENTS: Cites: Plant J. 2006 Mar;45(6):917-29 (medline /16507083)
COMMENTS: Cites: Plant Physiol. 2006 May;141(1):108-20 (medline /16531489)
COMMENTS: Cites: New Phytol. 2006;170(2):239-60 (medline /16608451)
COMMENTS: Cites: Plant Physiol. 1977 Jun;59(6):1085-7 (medline /16659999)
COMMENTS: Cites: Science. 2006 Sep 15;313(5793):1596-604 (medline /16973872)
COMMENTS: Cites: Planta. 2007 Apr;225(5):1277-85 (medline /17086401)
COMMENTS: Cites: Plant J. 2007 Feb;49(4):740-9 (medline /17253989)
COMMENTS: Cites: Plant Physiol. 2007 Jun;144(2):961-75 (medline /17434987)
COMMENTS: Cites: Mol Biol Evol. 2007 Aug;24(8):1596-9 (medline /17488738)
COMMENTS: Cites: Plant Mol Biol. 2007 Aug;64(6):657-72 (medline /17534719)
COMMENTS: Cites: Science. 1985 Nov 8;230(4726):674-6 (medline /17797291)
COMMENTS: Cites: Plant J. 2008 Apr;54(2):249-59 (medline /18208526)
COMMENTS: Cites: BMC Mol Biol. 2008;9:28 (medline /18325098)
COMMENTS: Cites: Nature. 2008 May 15;453(7193):391-5 (medline /18425111)
COMMENTS: Cites: J Exp Bot. 2008;59(8):2205-19 (medline /18467325)
COMMENTS: Cites: Plant Physiol. 2009 Feb;149(2):938-48 (medline /19074629)
COMMENTS: Cites: New Phytol. 2009;181(1):71-8 (medline /19076718)
COMMENTS: Cites: Chemosphere. 2009 Jun;75(11):1468-76 (medline /19328518)
COMMENTS: Cites: J Hazard Mater. 2009 Oct 30;170(2-3):705-10 (medline /19501960)
COMMENTS: Cites: J Plant Physiol. 2010 Feb 15;167(3):169-75 (medline /19765857)
COMMENTS: Cites: PLoS Genet. 2010 Apr;6(4):e1000911 (medline /20419142)
COMMENTS: Cites: Anal Biochem. 1994 Nov 15;223(1):7-12 (medline /7535022)
COMMENTS: Cites: J Biol Chem. 1994 Jan 28;269(4):3027-33 (medline /8300635)
COMMENTS: Cites: Physiol Rev. 1993 Jan;73(1):79-118 (medline /8419966)
COMMENTS: Cites: Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 (medline /9396791)
COMMENTS: Cites: Curr Opin Chem Biol. 1998 Apr;2(2):222-34 (medline /9667939)
COMMENTS: Cites: Plant Physiol. 1999 Feb;119(2):543-52 (medline /9952450)
COMMENTS: Cites: J Mol Biol. 1998 Oct 23;283(2):489-506 (medline /9769220)
COMMENTS: Cites: Tree Physiol. 2005 Nov;25(11):1469-72 (medline /16105814)
COMMENTS: Cites: Plant Physiol. 1949 Oct;24(4):739-43 (medline /16654260)
COMMENTS: Cites: Environ Pollut. 2007 Jul;148(1):107-14 (medline /17224228)
COMMENTS: Cites: New Phytol. 2009 Oct;184(2):323-9 (medline /19656301)
COMMENTS: Cites: J Biol Chem. 1989 Apr 5;264(10):5598-605 (medline /2564391)
COMMENTS: Cites: EMBO J. 1999 Jun 15;18(12):3325-33 (medline /10369673)
COMMENTS: Cites: Plant Cell. 2000 Jan;12(1):97-110 (medline /10634910)
COMMENTS: Cites: Plant Physiol. 2000 Jul;123(3):825-32 (medline /10889232)
COMMENTS: Cites: Plant Physiol. 2000 Jul;123(3):1029-36 (medline /10889252)
COMMENTS: Cites: Plant Physiol. 2001 May;126(1):299-306 (medline /11351093)
COMMENTS: Cites: J Exp Bot. 2001 Oct;52(363):1959-67 (medline /11559731)
COMMENTS: Cites: Plant Physiol. 2002 Apr;128(4):1359-67 (medline /11950984)
COMMENTS: Cites: Environ Health Perspect. 2002 Oct;110 Suppl 5:797-9 (medline /12426134)
COMMENTS: Cites: Environ Pollut. 2003;123(1):131-8 (medline /12663213)
COMMENTS: Cites: J Exp Bot. 2003 Aug;54(389):1833-9 (medline /12815036)
COMMENTS: Cites: Plant J. 2003 Jul;35(2):164-76 (medline /12848823)
COMMENTS: Cites: Plant J. 2004 Jan;37(2):251-68 (medline /14690509)
COMMENTS: Cites: Plant Cell. 2004 May;16(5):1327-39 (medline /15100400)
COMMENTS: Cites: FEBS Lett. 2004 Jul 2;569(1-3):140-8 (medline /15225623)
COMMENTS: Cites: Plant Physiol. 2004 Jul;135(3):1378-87 (medline /15247401)
COMMENTS: Cites: Plant Physiol. 2004 Nov;136(3):3814-23 (medline /15516513)
COMMENTS: Cites: Plant Cell. 2005 Jul;17(7):2089-106 (medline /15923352)
ABSTRACT: Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line.
1   ...   41   42   43   44   45   46   47   48   ...   151


The database is protected by copyright ©dentisty.org 2016
send message

    Main page