Appendix 2-5: Rejected ecotox bibliography for Chlorpyrifos



Download 6.25 Mb.
Page125/151
Date conversion04.02.2017
Size6.25 Mb.
1   ...   121   122   123   124   125   126   127   128   ...   151
We used PC12 cells as a neurodevelopmental model to compare the effects of chlorpyrifos and diazinon on the expression of genes encoding glutamate transporters. Chlorpyrifos had a greater effect in cells undergoing nerve growth factor-induced neurodifferentiation as compared to undifferentiated PC12 cells, with peak sensitivity at the initiation of differentiation, reflecting a global upregulation of all the glutamate transporter genes expressed in this cell line. In differentiating cells, chlorpyrifos had a significantly greater effect than did diazinon and concordance analysis indicated no resemblance in their expression patterns. At the same time, the smaller effects of diazinon were highly concordant with those of an organochlorine pesticide (dieldrin) and a metal (divalent nickel). We also performed similar evaluations for the cystine/glutamate exchanger, which provides protection against oxidative stress by moving cystine into the cell; again, chlorpyrifos had the greatest effect, in this case reducing expression in undifferentiated and differentiating cells. Our results point to excitotoxicity and oxidative stress as major contributors to the noncholinesterase mechanisms that distinguish the neurodevelopmental outcomes between different organophosphates while providing a means whereby apparently unrelated neurotoxicants may produce similar outcomes. 2010 Elsevier Inc. All rights reserved.
Keywords: 2921-88-2
Keywords: Cholinesterase Inhibitors -- pharmacology
Keywords: Animals
Keywords: Analysis of Variance
Keywords: Organophosphates
Keywords: Glutamic Acid
Keywords: Amino Acid Transport System X-AG -- metabolism
Keywords: Oligonucleotide Array Sequence Analysis -- methods
Keywords: Neurotoxins -- pharmacology
Keywords: Chlorpyrifos -- pharmacology
Keywords: Nerve Growth Factor -- pharmacology
Keywords: Cystine -- metabolism
Keywords: Amino Acid Transport System X-AG
Keywords: Rats
Keywords: Organophosphates -- pharmacology
Keywords: 56-89-3
Keywords: Cystine
Keywords: Gene Expression Regulation -- drug effects
Keywords: 333-41-5
Keywords: Cell Differentiation -- drug effects
Keywords: Diazinon -- pharmacology
Keywords: Time Factors
Keywords: Glutamic Acid -- metabolism
Keywords: 9061-61-4
Keywords: PC12 Cells -- drug effects
Keywords: 56-86-0
Keywords: Nerve Growth Factor
Keywords: Gene Expression Profiling -- methods
Keywords: Chlorpyrifos
Keywords: Cholinesterase Inhibitors
Keywords: 0
Keywords: Maximum Tolerated Dose
Keywords: Statistics as Topic
Keywords: Neurotoxins
Keywords: Amino Acid Transport System X-AG -- genetics
Keywords: Diazinon
Date completed - 2011-02-14
Date created - 2010-08-16
Date revised - 2012-12-20
Language of summary - English
Pages - 76-83
ProQuest ID - 748974134
SuppNotes - Cites: Environ Health Perspect. 1999 Feb;107 Suppl 1:71-80[10229709]; Cites: Br J Nutr. 1978 May;39(3):639-46[638131]; Cites: Toxicol Appl Pharmacol. 1999 Nov 1;160(3):217-30[10544056]; Cites: Brain Res. 2000 Feb 28;857(1-2):87-98[10700556]; Cites: Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14488-93[12388773]; Cites: Neuroscience. 2003;119(4):945-64[12831855]; Cites: Arch Biochem Biophys. 2004 Apr 1;424(1):89-96[15019840]; Cites: Life Sci. 2005 May 6;76(25):2933-44[15820504]; Cites: Clin Chim Acta. 2006 Apr;366(1-2):1-13[16337171]; Cites: Environ Health Perspect. 2006 Jan;114(1):10-7[16393651]; Cites: Environ Health Perspect. 2006 May;114(5):667-72[16675418]; Cites: EMBO J. 2006 Jul 26;25(14):3411-21[16858406]; Cites: Environ Health Perspect. 2006 Oct;114(10):1542-6[17035140]; Cites: Toxicol Appl Pharmacol. 2007 Mar;219(2-3):181-9[17084875]; Cites: Environ Health Perspect. 2007 Jan;115(1):65-70[17366821]; Cites: Environ Health Perspect. 2007 Jan;115(1):93-101[17366826]; Cites: Brain Res Bull. 2007 May 30;72(4-6):232-74[17452286]; Cites: Rev Environ Health. 2007 Jan-Mar;22(1):57-73[17508698]; Cites: Environ Health Perspect. 2007 Jun;115(6):909-16[17589599]; Cites: Environ Health Perspect. 2007 Sep;115(9):1306-13[17805420]; Cites: Neurotoxicol Teratol. 2008 Jan-Feb;30(1):38-45[18096363]; Cites: Brain Res Bull. 2008 Jan 31;75(1):166-72[18158111]; Cites: Environ Health Perspect. 2008 Mar;116(3):340-8[18335101]; Cites: Brain Res Bull. 2008 Mar 28;75(5):640-7[18355640]; Cites: Brain Res Bull. 2008 Jul 1;76(4):424-38[18502319]; Cites: Free Radic Res. 2008 Jul;42(7):674-87[18654882]; Cites: Crit Rev Toxicol. 2008;38 Suppl 2:1-125[18726789]; Cites: Brain Res Bull. 2009 Mar 16;78(4-5):211-25[18812211]; Cites: Toxicol Appl Pharmacol. 2008 Dec 1;233(2):211-9[18835401]; Cites: Environ Health Perspect. 2008 Dec;116(12):1713-9[19079725]; Cites: Neurotoxicol Teratol. 2010 Jan-Feb;32(1):42-51[19130878]; Cites: Brain Res. 2009 Mar 31;1263:23-32[19368821]; Cites: Environ Health Perspect. 2009 Apr;117(4):587-96[19440498]; Cites: Brain Res. 2010 Feb 26;1316:1-16[20026089]; Cites: Pediatrics. 2010 Jun;125(6):e1270-7[20478945]; Cites: Toxicology. 1995 Dec 15;104(1-3):129-40[8560491]; Cites: Toxicology. 1996 Aug 1;112(1):57-68[8792849]; Cites: Cell Calcium. 1996 Nov;20(5):441-6[8955559]; Cites: Brain Res. 1997 Sep 26;769(2):211-8[9374188]; Cites: Toxicol Sci. 1998 Jan;41(1):8-20[9520337]; Cites: Dev Neurosci. 1998;20(1):34-41[9600388]; Cites: Dev Neurosci. 1998;20(1):83-92[9600394]; Cites: Toxicol Appl Pharmacol. 1998 Jul;151(1):182-91[9705902]; Cites: Toxicol Lett. 1998 Sep 15;98(3):139-46[9788582]; Cites: Toxicol Lett. 1994 Jan;70(1):71-6[8310459]; Cites: Brain Res Dev Brain Res. 2000 Jun 30;121(2):189-95[10876031]; Cites: J Neurochem. 2001 Mar;76(6):1935-48[11259512]; Cites: Environ Health Perspect. 2001 Sep;109(9):909-13[11673119]; Cites: Free Radic Biol Med. 2001 Dec 1;31(11):1473-85[11728820]; Cites: Brain Res Dev Brain Res. 2003 Dec 30;147(1-2):183-90[14741763]; Cites: Toxicol Appl Pharmacol. 2004 Jul 15;198(2):132-51[15236950]; Cites: Chem Res Toxicol. 2004 Aug;17(8):983-98[15310231]; Cites: Brain Res. 2005 Jul 5;1049(1):80-8[15932749]; Cites: Toxicol Appl Pharmacol. 2005 Aug 1;206(1):17-26[15963341]; Cites: Neurotoxicol Teratol. 2010 Mar-Apr;32(2):124-31[20004241]; Cites: Neuroscience. 2010 Mar 31;166(3):899-906[20096330]; Cites: Environ Health Perspect. 1989 Mar;80:127-42[2647474]; Cites: Sci Am. 1986 Apr;254(4):100-7[3961465]; Cites: Am J Vet Res. 1972 Mar;33(3):579-83[5014466]; Cites: Glia. 1999 Nov;28(2):85-96[10533053]
Last updated - 2013-01-19
British nursing index edition - Brain research bulletin, August 30, 2010, 83(1-2):76-83
Corporate institution author - Slotkin, Theodore A; Lobner, Doug; Seidler, Frederic J
DOI - MEDL-20600679; 20600679; NIHMS224299; PMC2922476; 1873-2747 eng

1268. Slotkin, Theodore a and Seidler, Frederic J. Benzo[a]Pyrene Impairs Neurodifferentiation in Pc12 Cells. 2009 Aug 28; 80, (1-2): 17-21.


Rec #: 44669
Keywords: IN VITRO
Notes: Chemical of Concern: CPY
Abstract: Abstract: Animal studies indicate neurobehavioral anomalies after prenatal exposure to benzo[a]pyrene (BaP). In order to determine if BaP directly affects neurodevelopment, we compared its effects to those of the organophosphate insecticide, chlorpyrifos (CPF), in undifferentiated and differentiating neuronotypic PC12 cells, evaluating indices of cell replication, cell number, neurite outgrowth and phenotypic differentiation. Unlike CPF, BaP did not inhibit DNA synthesis in undifferentiated cells. In cells undergoing nerve growth factor-induced differentiation, CPF reduced cell numbers (assessed by DNA content) whereas BaP increased them, suggesting a delay in the transition between cell replication and differentiation. Indices of cell enlargement (total protein/DNA) and neurite outgrowth (membrane protein/DNA) also showed opposite effects of CPF (increases) and BaP (decreases). We directly confirmed BaP impairment of neurodifferentiation by measuring markers for the two neurotransmitter phenotypes expressed by PC12 cells: tyrosine hydroxylase (dopamine phenotype) and choline acetyltransferase (acetylcholine phenotype). BaP significantly reduced both markers in differentiating cells, with a preferentially greater effect on the acetylcholine phenotype. Our results indicate that low, non-toxic levels of BaP can impair neurodifferentiation, resulting in excess cell numbers at the expense of the emergence of neurotransmitter phenotypes. BaP thus has direct actions on developing neuronal cells that could contribute to the adverse neurodevelopmental effects seen with in vivo exposures.
Keywords: Benzo(a)pyrene -- pharmacology
Keywords: 2921-88-2
Keywords: Cholinesterase Inhibitors -- pharmacology
Keywords: Animals
Keywords: Tyrosine 3-Monooxygenase -- metabolism
Keywords: Dose-Response Relationship, Drug
Keywords: Humans
Keywords: PC12 Cells -- drug effects
Keywords: EC 1.14.16.2
Keywords: Chlorpyrifos -- pharmacology
Keywords: Tyrosine 3-Monooxygenase
Keywords: Choline O-Acetyltransferase -- metabolism
Keywords: Chlorpyrifos
Keywords: Rats
Keywords: Cholinesterase Inhibitors
Keywords: 0
Keywords: Insecticides
Keywords: PC12 Cells -- physiology
Keywords: Benzo(a)pyrene
Keywords: 50-32-8
Keywords: Cell Differentiation -- drug effects
Keywords: Insecticides -- pharmacology
Keywords: Choline O-Acetyltransferase
Keywords: EC 2.3.1.6
Date completed - 2009-11-02
Date created - 2009-07-27
Date revised - 2012-12-20
Language of summary - English
Pages - 17-21
ProQuest ID - 67517136
SuppNotes - Cites: Neuroscience. 1986 Feb;17(2):399-407[2422585]; Cites: Brain Res Bull. 2009 Mar 30;78(6):313-22[18977280]; Cites: Pediatr Res. 1988 Nov;24(5):583-7[2905035]; Cites: Anal Biochem. 1971 Oct;43(2):588-600[4400965]; Cites: Dev Biol. 1965 Dec;12(3):451-66[5884354]; Cites: Teratology. 1984 Oct;30(2):211-24[6208628]; Cites: Toxicol Lett. 1994 Jan;70(1):71-6[8310459]; Cites: Toxicology. 1995 Dec 15;104(1-3):129-40[8560491]; Cites: Toxicology. 1996 Aug 1;112(1):57-68[8792849]; Cites: Cell Calcium. 1996 Nov;20(5):441-6[8955559]; Cites: Brain Res. 1997 Sep 26;769(2):211-8[9374188]; Cites: Toxicol Appl Pharmacol. 1998 Jul;151(1):182-91[9705902]; Cites: Toxicol Lett. 1998 Sep 15;98(3):139-46[9788582]; Cites: Toxicol Lett. 1998 Nov 12;99(3):207-21[9862287]; Cites: Toxicol Appl Pharmacol. 1999 Nov 1;160(3):217-30[10544056]; Cites: Brain Res. 2000 Feb 28;857(1-2):87-98[10700556]; Cites: Brain Res. 2000 Jun 9;867(1-2):29-39[10837795]; Cites: Brain Res Dev Brain Res. 2000 Jun 30;121(2):189-95[10876031]; Cites: Inhal Toxicol. 2000 Jun;12(6):511-35[10880142]; Cites: Toxicol Appl Pharmacol. 2000 Sep 15;167(3):246-52[10986016]; Cites: Neurotoxicology. 2001 Feb;22(1):49-62[11307851]; Cites: Environ Health Perspect. 2001 Sep;109(9):909-13[11673119]; Cites: Toxicol Lett. 2002 Mar 24;129(1-2):33-45[11879972]; Cites: Environ Health Perspect. 2003 Feb;111(2):201-5[12573906]; Cites: Brain Res Dev Brain Res. 2003 Mar 14;141(1-2):71-81[12644250]; Cites: Brain Res Dev Brain Res. 2003 Dec 30;147(1-2):183-90[14741763]; Cites: Toxicol Appl Pharmacol. 2004 May 15;197(1):49-65[15126074]; Cites: Toxicol Appl Pharmacol. 2004 Jul 15;198(2):132-51[15236950]; Cites: Cell Mol Biol (Noisy-le-grand). 2004 Sep;50(6):715-21[15641162]; Cites: Brain Res Dev Brain Res. 2005 Feb 8;154(2):239-46[15707677]; Cites: Toxicol Appl Pharmacol. 2005 Aug 1;206(1):17-26[15963341]; Cites: Neuropsychopharmacology. 2006 Aug;31(8):1647-58[16319912]; Cites: Environ Health Perspect. 2006 May;114(5):667-72[16675418]; Cites: Environ Health Perspect. 2006 Aug;114(8):1287-92[16882541]; Cites: Lancet. 2006 Dec 16;368(9553):2167-78[17174709]; Cites: Environ Health Perspect. 2007 Jan;115(1):93-101[17366826]; Cites: Neurotoxicology. 2007 Sep;28(5):965-78[17606297]; Cites: Environ Health Perspect. 2007 Sep;115(9):1306-13[17805420]; Cites: Environ Health Perspect. 2008 Jun;116(6):716-22[18560525]; Cites: Brain Res Bull. 2009 Mar 16;78(4-5):211-25[18812211]; Cites: Toxicol Appl Pharmacol. 2008 Dec 1;233(2):211-9[18835401]; Cites: Environ Health Perspect. 1989 Mar;80:127-42[2647474]
Last updated - 2013-01-19
British nursing index edition - Brain research bulletin, August 28, 2009, 80(1-2):17-21
Corporate institution author - Slotkin, Theodore A; Seidler, Frederic J
DOI - MEDL-19539729; 19539729; NIHMS125016; PMC2717353; 1873-2747 eng

1269. ---. Oxidative and Excitatory Mechanisms of Developmental Neurotoxicity: Transcriptional Profiles for Chlorpyrifos, Diazinon, Dieldrin, and Divalent Nickel in Pc12 Cells. 2009 Apr; 117, (4): 587-96.


Rec #: 41249
Keywords: IN VITRO
Notes: Chemical of Concern: CPY
Abstract: Abstract: Oxidative stress and excitotoxicity underlie the developmental neurotoxicity of numerous chemicals. We compared the effects of organophosphates (chlorpyrifos and diazinon), an organo-chlorine (dieldrin), and a metal [divalent nickel (Ni2+)] to determine how these mechanisms contribute to similar or dissimilar neurotoxic outcomes. We used PC12 cells as a model of developing neurons and evaluated transcriptional profiles for genes for oxidative stress responses and glutamate receptors. Chlorpyrifos had a greater effect on oxidative-stress-related genes in differentiating cells compared with the undifferentiated state. Chlorpyrifos and diazinon showed significant concordance in their effects on glutathione-related genes, but they were negatively correlated for effects on catalase and superoxide dismutase isoforms and had no concordance for effects on ionotropic glutamate receptors. Surprisingly, the correlations were stronger between diazinon and dieldrin than between the two organophosphates. The effects of Ni2+ were the least similar for genes related to oxidative stress but had significant concordance with dieldrin for effects on glutamate receptors. Our results point to underlying mechanisms by which different organophosphates produce disparate neurotoxic outcomes despite their shared property as cholinesterase inhibitors. Further, apparently unrelated neurotoxicants may produce similar outcomes because of convergence on oxidative stress and excitotoxicity. The combined use of cell cultures and microarrays points to specific end points that can distinguish similarities and disparities in the effects of diverse developmental neurotoxicants.
Keywords: Animals
Keywords: Superoxide Dismutase
Keywords: Transcription, Genetic -- drug effects
Keywords: Neurons -- drug effects
Keywords: Nickel
Keywords: Glutathione Transferase
Keywords: Receptors, Glutamate
Keywords: Receptors, Glutamate -- metabolism
Keywords: Cations, Divalent -- toxicity
Keywords: Superoxide Dismutase -- metabolism
Keywords: Organothiophosphorus Compounds -- toxicity
Keywords: Environmental Studies
Keywords: Rats
Keywords: Insecticides
Keywords: Dieldrin -- toxicity
Keywords: Cations, Divalent
Keywords: Gene Expression Regulation, Developmental -- drug effects
Keywords: Insecticides -- toxicity
Keywords: Organothiophosphorus Compounds
Keywords: Diazinon -- toxicity
Keywords: Dieldrin
Keywords: Glutathione Transferase -- metabolism
Keywords: Cell Differentiation
Keywords: Neurogenesis -- drug effects
Keywords: Catalase
Keywords: Chlorpyrifos
Keywords: Catalase -- metabolism
Keywords: Gene Expression Profiling
Keywords: Chlorpyrifos -- toxicity
Keywords: Nickel -- toxicity
Keywords: Diazinon
Keywords: PC12 Cells
Copyright - Copyright National Institute of Environmental Health Sciences Apr 2009
Language of summary - English
Pages - 587-96
ProQuest ID - 222652039
Last updated - 2012-03-02
Place of publication - Research Triangle Park
Corporate institution author - Slotkin, Theodore A; Seidler, Frederic J
DOI - 1705216811; 43121971; 67001; ENHP; 19440498; INODENHP0005615445
REFERENCES
Bagchi D, Bagchi M, Hassoun EA, Stohs SJ. 1995. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology 104:129-140.
Bagchi D, Bhattacharya 6, Stohs SJ. 1996. In vitro and in vivo induction of heat shock (stress) protein (Hsp) gene expression by selected pesticides. Toxicology 112:57-68.
Barr DB, Allen R. Olsson AO, Bravo R. Caltabiano LM, Montesano A, et al. 2005. Concentrations of selective metabolites of organophosphorus pesticides in the United States population. Environ Res 99:314-326.
Benters J, Schafer T, Beyersmann D, Hechtenberg S. 1996. Agonist-stimulated calcium transients in PC12 cells are affected differentially by cadmium and nickel. Cell Calcium 20:441-446.
Bouvier G, Seta N, Vigouroux-Villard A, Blanchard O, Momas I. 2005. Insecticide urinary metabolites in nonoccupationally exposed populations. J Toxicol Environ Health 8:485-512.
Brennen KC, Devaud LL, Liu JP, Lauder JM. 1998. Prenatal exposure to neurotoxicants dieldrin or lindane alters tert-butylbicyclophosphorothionate binding to GABA(A) receptors in fetal rat brainstem. Dev Neurosci 20:34-41.
Casey CE, Robinson MF. 1978. Copper, manganese, zinc, nickel, cadmium and lead in human foetal tissues. Br J Nutr 39:639-646.
Casida JE, Quistad GB. 2004. Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem Res Toxicol 17:983-998.
Chebabo SR, Santos MD, Albuquerque EX. 1999. The organophosphate sarin, at low concentrations, inhibits the evoked release of GABA in rat hippocampal slices. Neurotoxicology 20:871-882.
Choi DW, Rothman SM. 1990. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171-182.
Crumpton TL, Seidler FJ, Slotkin TA. 2000a. Developmental neurotoxicity of chlorpyrifos in vivo and in vitro: effects on nuclear transcription factor involved in cell replication and differentiation. Brain Res 857:87-98.
Crumpton TL, Seidler FJ, Slotkin TA. 2000b. Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Dev Brain Res 121:189-195.
Damodaran TV, Patel AG, Greenfield ST, Dressman HK, Lin SM, Abou-Donia MB. 2006. Gene expression profiles of the rat brain both immediately and 3 months following acute sarin exposure. Biochem Pharmacol 71:497-520.
Das KP, Barone S. 1999. Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: is acetylcholinesterase inhibition the site of action? Toxicol Appl Pharmacol 160:217-230.
Dekundy A, Kaminski RM, Zielinska E, Turski WA. 2007. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice. Toxicol Appl Pharmacol 219:114-121.
Faber JJ, Anderson DF, Morton MJ, Parks CM, Pinson CW, Thornburg KL, et al. 1985. Birth, its physiology, and the problems it creates. In: The Physiological Development of the Fetus and Newborn (Jones CT, Nathanielsz PW, eds). London:Academic Press, 371-380.
Fiaskos J, McLean WG, Hargreaves AJ. 1994. The toxicity of organophosphate compounds towards cultured PC12 cells. Toxicol Lett 70:71-76.
Fujita K, Lazarovici P, Guroff G. 1989. Regulation of the differentiation of PC12 pheochromocytoma cells. Environ Health Perspect 80:127-142.
Garcia SJ, Seidler FJ, Slotkin TA. 2005. Developmental neurotoxicity of chlorpyrifos: targeting glial cells. Environ Toxicol Pharmacol 19:455-461.
Giordano G, Afsharinejad Z, Guizzetfi M, Vitalone A, Kavanagh TJ, Costa LG. 2007. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol Appl Pharmacol 219:181-189.
Gitto E, Reiter RJ, Karbownik M, Tan DX, Gitto P, Barberi S, et al. 2002. Causes of oxidative stress in the pre- and perinatal period. Biol Neonate 81:146-157.
Gupta RC. 2004. Brain regional heterogeneity and toxicological mechanisms of organophosphates and carbamates. Toxicol Mech Methods 14:103-143.
Henderson G, Chen J, Schenker S. 1999. Ethanol, oxidative stress, reactive aldehydes end the fetus. Front Biosci 4:541-550.
Jameson BB, Seidler FJ, Oiao D, Slotkin TA. 2006. Chlorpyrifos affects phenotyplc outcomes in a model of mammalian neurodevelopment: critical stages targeting differentiation in PC12 cells. Environ Health Perspect 114:667-672.
Jameson RR, Seidler FJ, Slotkin TA. 2007. Nonenzymatic functions of acetylcholinesterase splice variants in the developmental neurotoxicity of organophosphates: chlorpyrifos, chlorpyrifos oxon and diazinon. Environ Health Perspect 115:65-70.
Jett DA, Navoa RV. 2000. In vitro and in vivo effects of chlorpyrifos on glutathione peroxidase and catalase in developing rat brain. Neurotoxicology 21:141-145.
Katz EJ, Cortes Vf, Eidefrawi MF, Eldefrawi AT. 1997. Chlorpyrifos, parathion, and their oxons bind to and desensitize a nicotinic acetylcholine receptor: relevance to their toxicities. Toxicol Appl Pharmacol 146:227-236.
Kern JK, Jones AM. 2006. Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health B 9:485-499.
Kitazawa M, Anantharam V, Kanthasamy AG. 2001. Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells. Free Radical Biol Med 31:1473-1485.
Kitazawa M, Anantharam V, Kanthasamy AG. 2003. Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase CS in dopaminergic cells: relevance to oxidative stress and dopaminergic degeneration. Neuroscience 119:945-964.
Lagercrantz H, Slotkin TA. 1986. The "stress" of being born. Sci Am 254:100-107.
Li WW, Casida JE. 1998, Organophosphorus neuropathy target esterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells. Toxicol Lett 98:139-146.
Liu JP, Brannen KC, Grayson DR, Morrow AL, Devaud LL, Lauder JM. 1998. Prenatal exposure to the pesticide dieldrin or the GABA(A) receptor antagonist bicuculline differentially alters expression of GABA(A) receptor subunit mRNAs in fetal rat brainstem. Dev Neurosci 20:83-92.
Mulholland PJ, Stepanyan TD, Self RL, Hensley AK, Harris BR, Kowalski A, et al. 2005. Corticosterone and dexamethasone potentiate cytotoxicity associated with oxygen-glucose deprivation in organotypic cerebellar slice cultures. Neuroscience 136:259-267.
Nagata K, Huang CS, Song JH, Narahashi T. 1997. Direct actions of anticholinesterases on the neuronal nicotinic acetylcholine receptor channels. Brain Res 769:211-218.
National Center far Biotechnology information. 2008. GenBank Overview. Available: http://www.ncbi.nlm.nih.gov/Genbank/ [accessed 27 February 2009).
National Library of Medicine. 2006. Superfund Chemicals in TOXMAP. Available: http://toxmap.nlm.nih.gov/toxmap/ main/sfChemicals.jsp [accessed 9 August 2006].
Nikodijevic B, Guroff G. 1992. Nerve growth factor-stimulated calcium uptake into PC12 cells: uniqueness of the channel and evidence for phosphorylation. J Neurosci Res 31:591-599.
Ohtsuka K, Suzuki T. 2000. Roles of molecular chaperones in the nervous system. Brain Res Bull 53:141-146.
Olanow CW, Arendash GW. 1994. Metals and free radicals in neurodegeneration. Curr Opin Neurol 7:548-558.
Ostrea EM, Morales V, Ngoumgna E, Prescilla R, Tan E, Hernandez E, et al. 2002. Prevalence of fetal exposure to environmental toxins as determined by meconium analysis. Neurotoxicology 23(3):329-339.
Pardo CA, Eberhart CG. 2007. The neurobiology of autism. Brain Pathol 17:434-447.
Pope CN. 1999. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health 2:161-181.
Qiao D, Seidler FJ, Slotkin TA. 2001. Developmental neurotoxicity of chlorpyrifos modeled in vitro: comparative effects of metabolites and other Cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells. Environ Health Perspect 109:909-913.
Qiao D, Seidler FJ, Slotkin TA. 2005. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicol Appl Pharmacol 206:17-26.
Qiao D. Seidler FJ, Violin JD, Slotkin TA. 2003. Nicotine is a developmental neurotoxicant and neuroprotectant stageselective inhibition of DNA synthesis coincident with shielding from effects of chlorpyrifos. Dev Brain Res 147:183-190.
Roegge CS, Timofeeva OA. Seidler FJ, Slotkin TA, Levin ED. 2008. Developmental diazinon neurotoxicity in rats: later effects on emotional response. Brain Res Bull 75:166-172.
Sinha C, Seth K, Islam F, Chaturvedi RK, Shukla S, Mathur N, et al. 2006. Behavioral and neurochemical effects induced by pyrethroid-based mosquito repellent exposure in rat offsprings during prenatal and early postnatal period. Neurotoxicol Teratol 28:472-481.
Slotkin TA. 1999. Developmental cholinotoxicants: nicotine and chlorpyrifos. Environ Health Perspect 107(suppl 11:71-80.
Slotkin TA. 2004. Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol 198:132-151.
Slotkin TA. 2005. Developmental neurotoxicity of organophosphates: a case study of chlorpyrifos. In: Toxicity of Organophosphate and Carbamate Pesticides (Gupta RC, ed). San Diego:Elsevier Academic Press, 293-314.
Slotkin TA, Bodwell BE, Levin ED, Seidler FJ. 2008a. Neonatal exposure to low doses of diazinon: long-term effects on neural cell development and acetylcholine systems. Environ Health Perspect 116:340-348.
Slotkin TA, Bodwell BE. Ryde IT. Levin ED, Seidler FJ. 2008b. Exposure of neonatal rats to parathion elicits sex-selective impairment of acetylcholine systems in brain regions during adolescence and adulthood. Environ Health Perspect 116:1308-1314.
Slotkin TA, Levin ED, Seidier FJ. 2006a. Comparative developmental neurotoxicity of organophosphate insecticides: effects on brain development are separable from systemic toxicity. Environ Health Perspect 114:746-751.
Slotkin TA, Levin ED, Seidler FJ. 2009. Developmental neurotoxicity of parathion: progressive effects on serotonergic systems in adolescence and adulthood. Neurotoxicol Teratol 31:11-17.
Slotkin TA, MacKillop EA, Ryde IT, Seidler FJ. 2007a. Ameliorating the developmental neurotoxicity of chlorpyrifos: a mechanisms-based approach in PC12 cells. Environ Health Perspect 115:1306-1313.
Slotkin TA, MacKillop EA, Ryde IT, Tate CA. Seidler FJ. 2007b. Screening for developmental neurotoxicity using PC12 cells: comparisons of organophosphates with a carbamate, an organochlorine and divalent nickel. Environ Health Perspect 115:93-101.
Slotkin TA, Oliver CA, Seidler FJ. 2005. Critical periods for the role of oxidative stress in the developmental neurotoxicity of chlorpyrifos and terbutaline, alone or in combination. Dev Brain Res 157:172-180.
Slotkin TA, Ryde IT, Levin ED, Seidler FJ. 2008c. Developmental neurotoxicity of low-dose diazinon exposure of neonatal rats: effects on serotonin systems in adolescence and adulthood. Brain Res Bull 75:640-647.
Slotkin TA, Seidler FJ. 2007. Comparative developmental neurotoxicity of organophosphates in vivo: transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Res Bull 72:232-274.
Slotkin TA, Seidler FJ. 2008. Developmental neurotoxicants target neurodifferentiation into the serotonin phenotype: chlorpyrifos, diazinon, dieldrin and divalent nickel. Toxicol Appl Pharmacol 233(2):21 1-219.
Slotkin TA, Seidier FJ. 2009. Transcriptional profiles reveal similarities and differences in the effects of developmental neurotoxicants on differentiation into neurotransmitter phenotypes in PC12 cells. Brain Res Bull 78:211-225.
Slotkin TA, Seidler FJ, Fumagalli F. 2007c. Exposure to organophosphates reduces the expression of neurotrophic factors in neonatal rat brain regions: similarities and differences in the effects of chlorpyrifos and diazinon on the fibroblast growth factor superfamily. Environ Health Perspect 115:909-916.
Slotkin TA, Seidler FJ, Fumagalli F. 2008d. Targeting of neurotrophic factors, their receptors, and signaling pathways in the developmental neurotoxicity of organophosphates in vivo and in vitro. Brain Res Bull 76:424-438.
Slotkin TA, Seidler FJ, Fumagalli F. 2008e. Unrelated developmental neurotoxicants elicit similar transcriptional profiles for effects on neurotrophic factors and their receptors in an in vitro model. Neurotoxicol Teratol doi:10.1016/j. ntt.2008.11.006[0nline 13 December 2008).
Slotkin TA, Tate CA, Ryde IT, Levin ED, Seidler FJ. 2006b. Organophosphate insecticides target the serotonergic system in developing rat brain regions: disparate effects of diazinon and parathion at doses spanning the threshold for Cholinesterase inhibition. Environ Health Perspect 114:1542-1546.
Smulders CJ, Bueters TJ, Vailati S, van Kleef RG, Vijverberg HP. 2004. Block of neuronal nicotinic acetylcholine receptors by organophosphate insecticides. Toxicol Sci 82:545-554.
Song X, Violin JD, Seidler FJ, Slotkin TA. 1998. Modeling the developmental neurotoxicity of chlorpyrifos in vitro macro-molecule synthesis in PC12 cells, Toxicol Appl Pharmacol 151:182-191
Tanaka J, Toku K, Zhang B, Isihara K, Sakanaka M, Maeda N. 1999. Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia 28:85-96.
Tate DA, Yamamoto BK. 2007. Interactions between methamphetamine and environmental stress: role of oxidative stress, glutamate and mitochondrial dysfunction. Addiction 102:49-60.
Teng KK, Greene LA. 1994. Cultured PC12 cells: a model for neuronal function and differentiation. In: Cell Biology: A Laboratory Handbook (Calis JE, ed). San Diego, Press, 218-224.
Timofeeva OA, Roegga CS, Seidler FJ, Slotkin TA, Levin ED. 2008a. Persistent cognitive alterations in rats after early postnatal exposure to low doses of the organophosphate pesticide, diazinon. Neurotoxicol Teratol 30:38-45.
Timofeeva OA, Sanders D, Seemann K, Yang L, Hermanson D, Regenbogen S, et al. 2008b. Persistent behavioral alterations in rats neonatally exposed to low doses of the organophosphate pesticide, parathion. Brain Res Bull 77(6):404-111.
Tuler SM, Hazen AA, Bowen JM. 1989. Release and metabolism of dopamine in a clonal line of pheochromocytoma (PC12) cells exposed to fenthion. Fundam Appl Toxicol 13:484-492.
U.S. EPA. 2000. Chlorpyrifos: Re-evaluation Report of the FQPA Safety Factor Committee. HED Doc. No. 014077. Washington, DC:U.S. Environmental Protection Agency.
U.S. EPA (U.S. Environmental Protection Agency). 2002. Chlorpyrifos: End-Use Products Cancellation Order. Available: http://www.epa.gov/fedrflStr/EPA-PEST/2002/ January/Day-25/p1764.htm (accessed 6 December 2004].
U.S. EPA (U.S. Environmental Protection Agency). 2006. Opportunities to Improve Data Quality and Children's Health through the Food Quality Protection Act. Report no. 2006-P-00009. Available; http://www.epa.gov/oig/ reports/2006/20060110-2006-P-00009.pdf [accessed 7 July 2006].
Uzoukwu M, Sleight SD. 1972. Dieldrin toxicosis: fetotoxicosis, tissue concentrations, and microscopic and ultrastructural changes in guinea pigs. Am J Vet Res 33:579-583.
Bagchi, D., Bagchi, M. 1995 "In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides." Toxicology 104 1/3 129-140
Bagchi, D, Bhattacharya, G 1996 "In vitro and in vivo induction of heat shock (stress) protein (Hsp) gene expression by selected pesticides" Toxicology 112 1 57-68
Barr, D. B., Allen, R. 2005 "Concentrations of selective metabolites of organophosphorus pesticides in the United States population." Environmental Research 99 3 314-326
Benters, J, Schaefer, T 1996 "Agonist-stimulated calcium transients in PC12 cells are affected differentially by cadmium and nickel" Cell Calcium 20 5 441-446
Bouvier, Ghislaine, Seta, N. 2005 "Insecticide urinary metabolites in nonoccupationally exposed populations" Journal of Toxicology and Environmental Health Part B: Critical Reviews 8 6 485-512
65. Brannen KC, Devaud LL, Liu J, Lauder JM. Prenatal exposure to neurotoxicants dieldrin or lindane alters tert-butylbicyclophosphorothionate binding to GABA(A) receptors in fetal rat brainstem. Dev Neurosci 1998;20(1):34-41.
Casida, JE, Quistad, G B 2004 "Organophosphate toxicology: Safety aspects of nonacetylcholinesterase secondary targets" Chemical Research in Toxicology 17 8 983-998
Casey, C. E., Robinson, M. F. 1978 "Copper, manganese, zinc, nickel, cadmium and lead in human foetal tissues." British Journal of Nutrition 39 3 639-646
Chebabo, Santos, MD 1999 "The organophosphate sarin, at low concentrations, inhibits the evoked release of GABA in rat hippocampal slices" NeuroToxicology 20 6 871-882
CHOI, D. W., ROTHMAN, S. M. 1990 "The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death" Annual Review of Neuroscience 13 171-182
Crumpton TL, Seidler FJ, Slotkin TA. 2000b. Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Dev Brain Res 121: 189-195.
CRUMPTON, T. L., SEIDLER, F. J. 2000 "Developmental neurotoxicity of chlorpyrifos in vivo and in vitro : effects on nuclear transcription factors involved in cell replication and differentiation" Brain Research 857 1-2 87-98
23. Damodaran TV, Patel AG, Greenfield ST, Dressman HK, Lin SM, Abou-Donia MB: Gene expression profiles of the rat brain both immediately and 3 months following acute sarin exposure. Biochem Pharmacol 2006, 71:497-520.
DAN QIAO, SEIDLER, Frederic J. 2005 "Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos" Toxicology and Applied Pharmacology 206 1 17-26
Das, Kaberi P., Barone Jr., Stanley 1999 "Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: Is acetylcholinesterase inhibition the site of action?" Toxicology and Applied Pharmacology 160 3 217-230
Dekundy, Andrzej, Kaminski, Rafal M. 2007 "NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice" Toxicology and Applied Pharmacology 219 2-3 114-121
FLASKOS, J., MCLEAN, W. G. 1994 "The toxicity of organophosphate compounds towards cultured PC12 cells" Toxicology Letters 70 1 71-76
Fujita, K., Lazarovici, P. 1989 "Regulation of the differentiation of PC12 pheochromocytoma cells" Environmental Health Perspectives (EHP) 80 127-142
Garcia, S J, Seidler, F J 2005 "Developmental neurotoxicity of chlorpyrifos: targeting glial cells" Environmental Toxicology and Pharmacology 19 3 455-461
Giordano, Gennaro, Afsharinejad, Zhara 2007 "Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency" Toxicology and Applied Pharmacology 219 2-3 181-189
Gitto E, Reiter RJ. Karbownik M, Tan DX, Gino P, Barberi S, et al. 2002. Causes of oxidative stress in the pre- and perinatal period. Biol Neonate 81(3):146-157.
Henderson, GI, Chen, JJ 1999 "ETHANOL, OXIDATIVE STRESS, REACTIVE ALDEHYDES, AND THE FETUS" Frontiers in Bioscience 4 541-550
Jameson, R. R., Seidler, F. J. 2006 "Chlorpyrifos affects phenotypic outcomes in a model of mammalian neurodevelopment: critical stages targeting differentiation in PC12 cells." Environmental Health Perspectives (EHP) 114 5 667-672
Jameson, Ruth R., Seidler, Frederic J. 2007 "Nonenzymatic functions of acetylcholinesterase splice variants in the developmental neurotoxicity of organophosphates: Chlorpyrifos, chlorpyrifos oxon, and diazinon" Environmental Health Perspectives (EHP) 115 1 65-70
KATZ, E. J., CORTES, V. I. 1997 "Chlorpyrifos, parathion, and their oxons bind to and desensitize a nicotinic acetylcholine receptor : Relevance to their toxicities" Toxicology and Applied Pharmacology 146 2 227-236
Kitazawa, M, Anantharam, V 2003 "Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase Cdelta in dopaminergic cells: relevance to oxidative stress and dopaminergic degeneration." Neuroscience 119 4 945-964
Kitazawa, Masashi, Anantharam, Vellareddy 2001 "Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells" Free Radical Biology and Medicine 31 11 1473-1485
Lagercrantz, Hugo, Slotkin, Theodore A. 1986 "The "stress" of being born." Scientific American 254 4 100-107
66. Liu J, Brannen KC, Grayson DR, Morrow AL, Devaud LL, Lauder JM. Prenatal exposure to the pesticide dieldrin or the GABA(A) receptor antagonist bicuculline differentially alters expression of GABA(A) receptor subunit mRNAs in fetal rat brainstem. Dev Neurosci 1998;20(1):83-92.
Mulholland PJ, Stepanyan TD, Self RL, Hensley AK, Harris BR, Kowalski A, Littleton JM, Prendergast MA. Corticosterone and dexamethasone potentiate cytotoxicity associated with oxygen-glucose deprivation in organotypic cerebellar slice cultures. Neuroscience. 2005b; 136(1):259-67.
Nagata K, Huang CS, Song JH, Narahashi T. 1997. Direct actions of anticholinesterases on the neuronal nicotinic acetylcholine receptor channels. Brain Res 769: 211-218.
National Center for Biotechnology Information (NCBI). 2011. GenBank overview. Available at http://www.ncbi.nlm.nih.gov/genbank/. National Center for Biotechnology Information, Bethesda, MD.
National Library of Medicine. 2006. Superfund Chemicals in TOXMAP. Available: http://toxmap.nlm.nih.gov/toxmap/main/sfChemicals.jsp [accessed 9 August 2006].
NIKODIJEVIC, B., GUROFF, G. 1992 "Nerve growth factor-stimulated calcium uptake into PC12 cells : uniqueness of the channel and evidence for phosphorylation" Journal of Neuroscience Research 31 4 591-599
[24] Ohtsuka K, Suzuki T, Roles of molecular chaperones in the nervous system In Brain Res Bull,2000,53: Suppl 2:141-146.
Olanow, C.W., Arendash, G.W. 1994 "Metals and free radicals in neurodegeneration" Current Opinion in Neurology 7 6 548-558
Ostrea Jr., Enrique M., Morales, Victor 2002 "Prevalence of fetal exposure to environmental toxins as determined by meconium analysis" NeuroToxicology 23 3 329-339
Pardo, Carlos A., Eberhart, Charles G. 2007 "The neurobiology of autism" Brain Pathology 17 4 434-447
Pope CN, 1999. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health 2:161-181.
Qiao, Dan, Seidler, Frederic J. 2001 "Developmental neurotoxicity of chlorpyrifos modeled in vitro: Comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells" Environmental Health Perspectives (EHP) 109 9 909-913
Qiao D, Seidler FJ, Violin JD, Slotkin TA. 2003. Nicotine is a developmental neurotoxicant and neuroprotectant: stageselective inhibition of DNA synthesis coincident with shielding from effects of chlorpyrifos. Dev Brain Res 147:183-190.
Roegge, Cindy S., Timofeeva, Olga A. 2008 "Developmental diazinon neurotoxicity in rats: Later effects on emotional response." Brain Research Bulletin 75 1 166-172
Sinha, Seth, Islam, Chaturvedi, Shukla, Mathur, et al. 2006. Behavioral and neurochemical effects induced by pyrethroid-based mosquito repellent exposure in rat offsprings during prenatal and early postnatal period. Neurotoxicol Teratol 28(4): 472-481.
Slotkin, Theodore A., Seidler, Frederic J. 2007 "Comparative developmental neurotoxicity of organophosphates in vivo: Transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems" Brain Research Bulletin 72 4-6 232-274
Slotkin TA, Ryde IT, Levin ED, Seidler FJ. 2008b. Developmental neurotoxicity of low-dose diazinon exposure of neonatal rats: effects on serotonin systems in adolescence and adulthood. Brain Res Bull 75:640-647.
SLOTKIN, Theodore A., LEVIN, Edward D. 2009 "Developmental neurotoxicity of parathion : Progressive effects on serotonergic systems in adolescence and adulthood" Neurotoxicology and Teratology 31 1 11-17
Slotkin, Theodore A., Levin, Edward D. 2006 "Comparative developmental neurotoxicity of organophosphate insecticides: Effects on brain development are separable from systemic toxicity" Environmental Health Perspectives (EHP) 114 5 746-751
Slotkin, Theodore A. 1999 "Developmental cholinotoxicants: Nicotine and chlorpyrifos" Environmental Health Perspectives (EHP) 107 SUPPL. 1 71-80
[9] Slotkin TA, MacKillop EA, Ryde IT, Tate CA, and Seidler FJ: Screening for developmental neurotoxicity using PC12 cells: comparisons of organophosphates with a carbamate, an organochlorine, and divalent nickel. Environ Health Perspect 2007;115:93-101.
Slotkin TA. 2005. Developmental neurotoxicity of organophosphates: a case study of chlorpyrifos. In: Toxicity of Organophosphate and Carbamate Pesticides (Gupta RC, ed). San Diego: Elsevier Academic Press, 293-314.
Slotkin, Theodore A., Bodwell, Bethany E. 2008 "Neonatal exposure to low doses of diazinon: Long-term effects on neural cell development and acetylcholine systems" Environmental Health Perspectives (EHP) 116 3 340-348
Slotkin, Theodore A., Seidler, Frederic J. 2008 "Targeting of neurotrophic factors, their receptors, and signaling pathways in the developmental neurotoxicity of organophosphates in vivo and in vitro" Brain Research Bulletin 76 4 424-438
SLOTKIN, Theodore A., SEIDLER, Frederic J. 2008 "Developmental neurotoxicants target neurodifferentiation into the serotonin phenotype : Chlorpyrifos, diazinon, dieldrin and divalent nickel" Toxicology and Applied Pharmacology 233 2 211-219
Slotkin, Theodore A., Seidler, Frederic J. 2010 "Unrelated developmental neurotoxicants elicit similar transcriptional profiles for effects on neurotrophic factors and their receptors in an in vitro model" Neurotoxicology and Teratology 32 1 42-51
Slotkin TA, Seidler FJ, Fumagalli F. 2007c. Exposure to organophosphates reduces the expression of neuro-trophic factors in neonatal rat brain regions: similarities and differences in the effects of chlorpyrifos and diazinon on the fibroblast growth factor superfamily. Environ Health Perspect 115:909-916.
SLOTKIN, Theodore A. 2004 "Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates" Toxicology and Applied Pharmacology 198 2 132-151
Slotkin, Theodore A., Bodwell, Bethany E. 2008 "Exposure of neonatal rats to parathion elicits sex-selective impairment of acetylcholine systems in brain regions during adolescence and adulthood" Environmental Health Perspectives (EHP) 116 10 1308-1314
Slotkin, Theodore A., Tate, Charlotte A. 2006 "Organophosphate insecticides target the serotonergic system in developing rat brain regions: Disparate effects of diazinon and parathion at doses spanning the threshold for cholinesterase inhibition" Environmental Health Perspectives (EHP) 114 10 1542-1546
Smulders, CJGM, Bueters, TJH 2004 "Block of neuronal nicotinic acetylcholine receptors by organophosphate insecticides" Toxicological Sciences 82 2 545-554
SONG, X., VIOLIN, J. D. 1998 "Modeling the developmental neurotoxicity of chlorpyrifos in vitro : Macromolecule synthesis in PC12 cells" Toxicology and Applied Pharmacology 151 1 182-191
Tanaka, J, Toku, K 1999 "Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species" Glia 28 2 85-96
[47] Tata DA, Yamamoto BK, Interactions between methamphetamine and environmental stress: role of oxidative stress, glutamate and mitochondrial dysfunctionIn Addiction,2007,102: Suppl 1:49-60.
Teng KK, Greene LA. 1994. Cultured PC12 cells: a model for neuronal function and differentiation. In: Cell Biology: A Laboratory Handbook (Cells JE, ed). San Diego:Academic Press, 218-224.
Theodore A Slotkin, Emiko A MacKillop, Ian T Ryde, and Frederic J Seidler. "Ameliorating the Developmental Neurotoxicity of Chlorpyrifos: A Mechanisms-Based Approach in PC12 Cells." Environmental Health Perspectives 115:9 Sep 2007: 1306-13
Timofeeva, Olga A., Roegge, Cindy S. 2008 "Persistent cognitive alterations in rats after early postnatal exposure to low doses of the organophosphate pesticide, diazinon." Neurotoxicology and Teratology 30 1 38-45
47. Timofeeva OA, Sanders D, Seemann K, Yang L, Hermanson D, Regenbogen S, et al. Persistent behavioural alterations in rats neonatally exposed to low doses of the organophosphate pesticide, parathion. Brain Res Bull 2008; 77(6): 404-411.
[187] S.M. Tuler, A.A. Hazen, J.M. Bowen, Release and metabolism of dopamine in a clonal line of pheochromocytoma (PC12) cells exposed to fenthion, Fund Appl Toxicol 13 (1989) 484-492.
_____. 2000b. Chlorpyrifos: Re-evaluation Report of the FQPA Safety Factor Committee. HED Doc. No. 014077. Washington, DC:U.S. Environmental Protection Agency.
U.S. EPA (U.S. Environmental Protection Agency). 2006. Opportunities to Improve Data Quality and Children's Health through the Food Quality Protection Act. Report no. 2006-P-00009. Available; http://www.epa.gov/oig/reports/2006/20060110-2006-P-00009.pdf [accessed 7 July 2006].
U.S. EPA. 2002. Chlorpyrifos: End-Use Products Cancellation Order. Fed Reg 67:3698-3700. Available: http://www.epa.gov/fedrgstr/EPA-PEST/2002/January/Day-25/p1764.htm [accessed 6 December 2004].
Uzoukwu, M., Sleight, S.D. 1972 "Dieldrin toxicosis: fetotoxicosis, tissue concentrations, and microscopic and ultrastructural changes in guinea pigs." American journal of veterinary research 33 3 579-583
WEIWEI LI, CASIDA, J. E. 1998 "Organophosphorus neuropathy target esterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells" Toxicology Letters 98 3 139-146 English

1270. ---. Protein Kinase C Is a Target for Diverse Developmental Neurotoxicants: Transcriptional Responses to Chlorpyrifos, Diazinon, Dieldrin and Divalent Nickel in Pc12 Cells. 2009 Mar 31; 1263, 23-32.


Rec #: 41319
Keywords: IN VITRO
Notes: Chemical of Concern: CPY
Abstract: Abstract: Unrelated developmental neurotoxicants can elicit similar functional outcomes, whereas agents in the same class may differ. We compared two organophosphate insecticides (chlorpyrifos, diazinon) with an organochlorine (dieldrin) and a metal (Ni(2+)) for similarities and differences in their effects on gene expression encoding subtypes of protein kinase C and their modulators, a cell signaling cascade that integrates the actions of neurotrophic factors involved in brain development. We conducted evaluations in PC12 cells, a model for neuronal development, with each agent introduced at 30 microM for 24 or 72 h, treatments devoid of cytotoxicity. Chlorpyrifos evoked by far the largest effect, with widespread upregulation of multiple genes; the effects were greater during neurodifferentiation than when cells were exposed prior to differentiation. Diazinon had smaller and less widespread effects, consistent with its lesser long-term impact on synaptic function and behavior
1   ...   121   122   123   124   125   126   127   128   ...   151


The database is protected by copyright ©dentisty.org 2016
send message

    Main page